1,544
Views
7
CrossRef citations to date
0
Altmetric
Research Paper

The novel microtubule-associated CAP-glycine protein Cgp1 governs growth, differentiation, and virulence of Cryptococcus neoformans

, , , &
Pages 566-584 | Received 19 May 2017, Accepted 24 Dec 2017, Published online: 27 Feb 2018

References

  • Mandelkow E, Mandelkow EM. Microtubules and microtubule-associated proteins. Curr Opin Cell Biol. 1995;7:72–81. doi:10.1016/0955-0674(95)80047-6.
  • Drewes G, Ebneth A, Mandelkow EM. MAPs, MARKs and microtubule dynamics. Trends Biochem Sci. 1998;23:307–11. doi:10.1016/S0968-0004(98)01245-6.
  • Caviston JP, Holzbaur EL. Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol. 2006;16:530–7. doi:10.1016/j.tcb.2006.08.002.
  • Vale RD. The molecular motor toolbox for intracellular transport. Cell. 2003;112:467–80. doi:10.1016/S0092-8674(03)00111-9.
  • Li S, Finley J, Liu ZJ, et al. Crystal structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain. J Biol Chem. 2002;277:48596–601. doi:10.1074/jbc.M208512200.
  • Steinmetz MO, Akhmanova A. Capturing protein tails by CAP-Gly domains. Trends Biochem Sci. 2008;33:535–45. doi:10.1016/j.tibs.2008.08.006.
  • Saito K, Kigawa T, Koshiba S, et al. The CAP-Gly domain of CYLD associates with the proline-rich sequence in NEMO/IKKgamma. Structure. 2004;12:1719–28. doi:10.1016/j.str.2004.07.012.
  • Weisbrich A, Honnappa S, Jaussi R, et al. Structure-function relationship of CAP-Gly domains. Nat Struct Mol Biol. 2007;14:959–67. doi:10.1038/nsmb1291.
  • Diamantopoulos GS, Perez F, Goodson HV, et al. Dynamic localization of CLIP-170 to microtubule plus ends is coupled to microtubule assembly. J Cell Biol. 1999;144:99–112. doi:10.1083/jcb.144.1.99.
  • Caudron F, Andrieux A, Job D, et al. A new role for kinesin-directed transport of Bik1p (CLIP-170) in Saccharomyces cerevisiae. J Cell Sci. 2008;121:1506–13. doi:10.1242/jcs.023374.
  • Berlin V, Styles CA, Fink GR. BIK1, a protein required for microtubule function during mating and mitosis in Saccharomyces cerevisiae, colocalizes with tubulin. J Cell Biol. 1990;111:2573–86. doi:10.1083/jcb.111.6.2573.
  • Radcliffe PA, Hirata D, Vardy L, et al. Functional dissection and hierarchy of tubulin-folding cofactor homologues in fission yeast. Mol Biol Cell. 1999;10:2987–3001. doi:10.1091/mbc.10.9.2987.
  • Radcliffe PA, Toda T. Characterisation of fission yeast alp11 mutants defines three functional domains within tubulin-folding cofactor B. Mol Gen Genet. 2000;263:752–60. doi:10.1007/s004380000252.
  • Park BJ, Wannemuehler KA, Marston BJ, et al. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS. 2009;23:525–30. doi:10.1097/QAD.0b013e328322ffac.
  • Feierbach B, Nogales E, Downing KH, et al. Alf1p, a CLIP-170 domain-containing protein, is functionally and physically associated with alpha-tubulin. J Cell Biol. 1999;144:113–24. doi:10.1083/jcb.144.1.113.
  • Deacon SW, Serpinskaya AS, Vaughan PS, et al. Dynactin is required for bidirectional organelle transport. J Cell Biol. 2003;160:297–301. doi:10.1083/jcb.200210066.
  • Donlin MJ, Upadhya R, Gerik KJ, et al. Cross talk between the cell wall integrity and cyclic AMP/protein kinase A pathways in Cryptococcus neoformans. MBio. 2014;5:01573–14. doi:10.1128/mBio.01573-14.
  • Vega LR, Fleming J, Solomon F. An α-tubulin mutant destabilizes the heterodimer: phenotypic consequences and interactions with tubulin-binding proteins. Mol Biol Cell. 1998;9:2349–60. doi:10.1091/mbc.9.9.2349.
  • Manjunath P, Therien I. Role of seminal plasma phospholipid-binding proteins in sperm membrane lipid modification that occurs during capacitation. J Reprod Immunol. 2002;53:109–19. doi:10.1016/S0165-0378(01)00098-5.
  • Fraser JA, Diezmann S, Subaran RL, et al. Convergent evolution of chromosomal sex-determining regions in the animal and fungal kingdoms. PLoS Biol. 2004;2:e384. doi:10.1371/journal.pbio.0020384.
  • Katiyar SK, Gordon VR, McLaughlin GL, et al. Antiprotozoal activities of benzimidazoles and correlations with β-tubulin sequence. Antimicrob Agents Chemother. 1994;38:2086–90. doi:10.1128/AAC.38.9.2086.
  • Stearns T, Hoyt MA, Botstein D. Yeast mutants sensitive to antimicrotubule drugs define three genes that affect microtubule function. Genetics. 1990;124:251–62.
  • Machin NA, Lee JM, Barnes G. Microtubule stability in budding yeast: characterization and dosage suppression of a benomyl-dependent tubulin mutant. Mol Biol Cell. 1995;6:1241–59. doi:10.1091/mbc.6.9.1241.
  • Koc A, Wheeler LJ, Mathews CK, et al. Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools. J Biol Chem. 2004;279:223–30. doi:10.1074/jbc.M303952200.
  • Ma W, Westmoreland JW, Gordenin DA, et al. Alkylation base damage is converted into repairable double-strand breaks and complex intermediates in G2 cells lacking AP endonuclease. PLoS Genet. 2011;7:e1002059. doi:10.1371/journal.pgen.1002059.
  • Sleigh MJ. The mechanism of DNA breakage by phleomycin in vitro. Nucleic Acids Res. 1976;3:891–901. doi:10.1093/nar/3.4.891.
  • Stubbe J, Kozarich JW. Mechanisms of bleomycin-induced DNA-degradation. Chem Rev. 1987;87:1107–36. doi:10.1021/cr00081a011.
  • Granger E, McNee G, Allan V, et al. The role of the cytoskeleton and molecular motors in endosomal dynamics. Semin Cell Dev Biol. 2014;31:20–9. doi:10.1016/j.semcdb.2014.04.011.
  • Sanglard D, Coste A, Ferrari S. Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Res. 2009;9:1029–50. doi:10.1111/j.1567-1364.2009.00578.x.
  • Kozel TR, Gotschlich EC. The capsule of Cryptococcus neoformans passively inhibits phagocytosis of the yeast by macrophages. J Immunol. 1982;129:1675–80.
  • Frases S, Salazar A, Dadachova E, et al. Cryptococcus neoformans can utilize the bacterial melanin precursor homogentisic acid for fungal melanogenesis. Appl Environ Microbiol. 2007;73:615–21. doi:10.1128/AEM.01947-06.
  • Jung KW, Yang DH, Maeng S, et al. Systematic functional profiling of transcription factor networks in Cryptococcus neoformans. Nat Commun. 2015;6:6757. doi:10.1038/ncomms7757.
  • Lee KT, So YS, Yang DH, et al. Systematic fungal analysis of kinases in the fungal pathogen Cryptococcus neoformans. Nat Commun. 2016;7:12766. doi:10.1038/ncomms12766.
  • Nielsen K, Cox GM, Wang P, et al. Sexual cycle of Cryptococcus neoformans var. grubii and virulence of congenic a and α isolates. Infect Immun. 2003;71:4831–41. doi:10.1128/IAI.71.9.4831-4841.2003.
  • Botts MR, Hull CM. Dueling in the lung: how Cryptococcus spores race the host for survival. Curr Opin Microbiol. 2010;13:437–42. doi:10.1016/j.mib.2010.05.003.
  • Lin X, Hull CM, Heitman J. Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature. 2005;434:1017–21. doi:10.1038/nature03448.
  • Molk JN, Bloom K. Microtubule dynamics in the budding yeast mating pathway. J Cell Sci. 2006;119:3485–90. doi:10.1242/jcs.03193.
  • Vogel SK, Pavin N, Maghelli N, et al. Microtubules and motor proteins: Mechanically regulated self-organization in vivo. European Physical Journal-Special Topics. 2009;178:57–69. doi:10.1140/epjst/e2010-01182-6.
  • Staudt MW, Kruzel EK, Shimizu K, et al. Characterizing the role of the microtubule binding protein Bim1 in Cryptococcus neoformans. Fungal Genetics Biol. 2010;47:310–7. doi:10.1016/j.fgb.2009.12.010.
  • Kim H, Jung KW, Maeng S, et al. Network-assisted genetic dissection of pathogenicity and drug resistance in the opportunistic human pathogenic fungus Cryptococcus neoformans. Sci Rep. 2015;5:8767. doi:10.1038/srep08767.
  • Maier EJ, Haynes BC, Gish SR, et al. Model-driven mapping of transcriptional networks reveals the circuitry and dynamics of virulence regulation. Genome Res. 2015;25:690–700. doi:10.1101/gr.184101.114.
  • Brown JCS, Nelson J, VanderSluis B, et al. Unraveling the biology of a fungal meningitis pathogen using chemical genetics. Cell. 2014;159:1168–87. doi:10.1016/j.cell.2014.10.044.
  • Rathinasamy K, Panda D. Suppression of microtubule dynamics by benomyl decreases tension across kinetochore pairs and induces apoptosis in cancer cells. FEBS J. 2006;273:4114–28. doi:10.1111/j.1742-4658.2006.05413.x.
  • Welker DL, Williams KL. Mitotic arrest and chromosome doubling using thiabendazole, cambendazole, nocodazole and ben late in the slime-mold Dictyostelium discoideum. J General Microbiol. 1980;116:397–407.
  • Pisano C, Battistoni A, Antoccia A, et al. Changes in microtubule organization after exposure to a benzimidazole derivative in Chinese hamster cells. Mutagenesis. 2000;15:507–15. doi:10.1093/mutage/15.6.507.
  • Straight AF, Marshall WF, Sedat JW, et al. Mitosis in living budding yeast: anaphase A but no metaphase plate. Science. 1997;277:574–8. doi:10.1126/science.277.5325.574.
  • Daum JR, Gomez-Ospina N, Winey M, et al. The spindle checkpoint of Saccharomyces cerevisiae responds to separable microtubule-dependent events. Curr Biol. 2000;10:1375–8. doi:10.1016/S0960-9822(00)00780-6.
  • Magiera MM, Gueydon E, Schwob E. DNA replication and spindle checkpoints cooperate during S phase to delay mitosis and preserve genome integrity. J Cell Biol. 2014;204:165–75. doi:10.1083/jcb.201306023.
  • Ikeda R, Sawamura K. Bacterial and H2O2 stress-induced apoptosis-like events in Cryptococcus neoformans. Res Microbiol. 2008;159:628–34. doi:10.1016/j.resmic.2008.07.006.
  • Semighini CP, Averette AF, Perfect JR, et al. Deletion of Cryptococcus neoformans AIF ortholog promotes chromosome aneuploidy and fluconazole-resistance in a metacaspase-independent manner. PLoS Pathog. 2011;7:e1002364. doi:10.1371/journal.ppat.1002364.
  • Kerres A, Vietmeier-Decker C, Ortiz J, et al. The fission yeast kinetochore component Spc7 associates with the EB1 family member Mal3 and is required for kinetochore-spindle association. Mol Biol Cell. 2004;15:5255–67. doi:10.1091/mbc.E04-06-0443.
  • Kerres A, Jakopec V, Fleig U. The conserved Spc7 protein is required for spindle integrity and links kinetochore complexes in fission yeast. Mol Biol Cell. 2007;18:2441–54. doi:10.1091/mbc.E06-08-0738.
  • Djinovic-Carugo K, Gautel M, Ylanne J, et al. The spectrin repeat: a structural platform for cytoskeletal protein assemblies. FEBS Lett. 2002;513:119–23. doi:10.1016/S0014-5793(01)03304-X.
  • Carlier MF, Simon C, Cassoly R, et al. Interaction between microtubule-associated protein tau and spectrin. Biochimie. 1984;66:305–11. doi:10.1016/0300-9084(84)90007-5.
  • Guy R, Gold J, Calleja JM, et al. Accuracy of serological assays for detection of recent infection with HIV and estimation of population incidence: a systematic review. Lancet Infect Dis. 2009;9:747–59. doi:10.1016/S1473-3099(09)70300-7.
  • Davidson RC, Cruz MC, Sia RA, et al. Gene disruption by biolistic transformation in serotype D strains of Cryptococcus neoformans. Fungal Genet Biol. 2000;29:38–48. doi:10.1006/fgbi.1999.1180.
  • So YS, Yang DH, Jung KW, et al. Molecular characterization of adenylyl cyclase complex proteins using versatile protein-tagging plasmid systems in Cryptococcus neoformans. J Microbiol Biotechnol. 2017;27:357–64. doi:10.4014/jmb.1609.09036.
  • Ko YJ, Yu YM, Kim GB, et al. Remodeling of global transcription patterns of Cryptococcus neoformans genes mediated by the stress-activated HOG signaling pathways. Eukaryot Cell. 2009;8:1197–217. doi:10.1128/EC.00120-09.
  • Bahn YS, Kojima K, Cox GM, et al. Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans. Mol Biol Cell. 2005;16:2285–300. doi:10.1091/mbc.E04-11-0987.