11,397
Views
83
CrossRef citations to date
0
Altmetric
Special Focus on Endemic Mycoses

The capsule of Cryptococcus neoformans

ORCID Icon, ORCID Icon, , , , & show all
Pages 822-831 | Received 09 Oct 2017, Accepted 16 Jan 2018, Published online: 01 Aug 2018

References

  • McClelland EE, Bernhardt P, Casadevall A. Estimating the relative contribution s of virulence factors for pathogenic microbes. Infect Immun. 2006;74:1500–4. doi:10.1128/IAI.74.3.1500-1504.2006
  • Chang YC, Kwon-Chung KJ. Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol. 1994;14:4912–9. doi:10.1128/MCB.14.7.4912
  • Chang YC, Penoyer LA, Kwon-Chung KJ. The second capsule gene of cryptococcus neoformans, CAP64, is essential for virulence. Infect Immun. 1996;64:1977–83.
  • Kabanda T, Siedner MJ, Klausner JD, et al. Point-of-care diagnosis and prognostication of cryptococcal meningitis with the cryptococcal antigen lateral flow assay on cerebrospinal fluid. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2014;58:113–6. doi:10.1093/cid/cit641
  • O'Meara TR, Alspaugh JA. The Cryptococcus neoformans capsule: a sword and a shield. Clin Microbiol Rev. 2012;25:387–408. doi:10.1128/CMR.00001-12
  • Haynes BC, Skowyra ML, Spencer SJ, et al. Toward an integrated model of capsule regulation in Cryptococcus neoformans. PLoS Pathog. 2011;7:e1002411. doi:10.1371/journal.ppat.1002411
  • Vecchiarelli A, Pericolini E, Gabrielli E, et al. Elucidating the immunological function of the Cryptococcus neoformans capsule. Future microbiology. 2013;8:1107–16. doi:10.2217/fmb.13.84
  • Garcia-Rodas R, Zaragoza O. Catch me if you can: phagocytosis and killing avoidance by Cryptococcus neoformans. FEMS immunology and medical microbiology. 2012;64:147–61. doi:10.1111/j.1574-695X.2011.00871.x
  • Kumar P, Yang M, Haynes BC, et al. Emerging themes in cryptococcal capsule synthesis. Curr Opin Struct Biol. 2011;21:597–602. doi:10.1016/j.sbi.2011.08.006
  • Klutts JS, Yoneda A, Reilly MC, et al. Glycosyltransferases and their products: cryptococcal variations on fungal themes. FEMS Yeast Res. 2006;6:499–512. doi:10.1111/j.1567-1364.2006.00054.x
  • Doering TL. How sweet it is! Cell wall biogenesis and polysaccharide capsule formation in Cryptococcus neoformans. Annu Rev Microbiol. 2009;63:223–47. doi:10.1146/annurev.micro.62.081307.162753
  • Ding H, Mayer FL, Sanchez-Leon E, et al. Networks of fibers and factors: regulation of capsule formation in Cryptococcus neoformans. F1000Res. 2016;5. pii: F1000 Faculty Rev-1786. doi:10.12688/f1000research.8854.1
  • Maxson ME, Cook E, Casadevall A, et al. The volume and hydration of the Cryptococcus neoformans polysaccharide capsule. Fungal Genet Biol. 2007;44:180–6. doi:10.1016/j.fgb.2006.07.010
  • Cleare W, Casadevall A. Scanning electron microscopy of encapsulated and non-encapsulated Cryptococcus neoformans and the effect of glucose on capsular polysaccharide release. Med Mycol. 1999;37:235–43.
  • Araujo GR, Fontes GN, Leao D, et al. Cryptococcus neoformans capsular polysaccharides form branched and complex filamentous networks viewed by high-resolution microscopy. Journal of structural biology. 2016;193:75–82. doi:10.1016/j.jsb.2015.11.010
  • Maxson ME, Dadachova E, Casadevall A, et al. Radial mass density, charge, and epitope distribution in the Cryptococcus neoformans capsule. Eukaryot Cell. 2007;6:95–109. doi:10.1128/EC.00306-06
  • Gates MA, Thorkildson P, Kozel TR. Molecular architecture of the Cryptococcus neoformans capsule. Mol Microbiol. 2004;52:13–24. doi:10.1111/j.1365-2958.2003.03957.x
  • Bryan RA, Zaragoza O, Zhang T, et al. Radiological studies reveal radial differences in the architecture of the polysaccharide capsule of Cryptococcus neoformans. Eukaryot Cell. 2005;4:465–75. doi:10.1128/EC.4.2.465-475.2005
  • Zaragoza O, McClellan EE, Telzak A, et al. Equatorial ring-ling like channels in the Cryptococcus neoformans polysaccharide capsule. FEMS Yeast Res. 2006;6:662–6. doi:10.1111/j.1567-1364.2006.00070.x
  • Frases S, Nimrichter L, Viana NB, et al. Cryptococcus neoformans capsular polysaccharide and exopolysaccharide fractions manifest physical, chemical, and antigenic differences. Eukaryot Cell. 2008;7:319–27. doi:10.1128/EC.00378-07
  • McFadden DC, De Jesus M, Casadevall A. The physical properties of the capsular polysaccharides from Cryptococcus neoformans suggest features for capsule construction. J Biol Chem. 2005;281:1868–75. doi:10.1074/jbc.M509465200
  • Frases S, Pontes B, Nimrichter L, et al. Capsule of Cryptococcus neoformans grows by enlargement of polysaccharide molecules. Proc Natl Acad Sci U S A. 2009;106:1228–33. doi:10.1073/pnas.0808995106
  • Cordero RJ, Frases S, Guimaraes AJ, et al. Evidence for branching in cryptococcal capsular polysaccharides and consequences on its biological activity. Mol Microbiol. 2011;79:1101–17. doi:10.1111/j.1365-2958.2010.07511.x
  • Cordero RJ, Pontes B, Guimaraes AJ, et al. Chronological aging is associated with biophysical and chemical changes in the capsule of Cryptococcus neoformans. Infect Immun. 2011;79:4990–5000. doi:10.1128/IAI.05789-11
  • Frases S, Viana NB, Casadevall A. Biophysical methods for the study of microbial surfaces. Front Microbiol. 2011;2:207. doi:10.3389/fmicb.2011.00207
  • Pontes B, Frases S. The Cryptococcus neoformans capsule: lessons from the use of optical tweezers and other biophysical tools. Front Microbiol. 2015;6:640. doi:10.3389/fmicb.2015.00640
  • Frases S, Pontes B, Nimrichter L, et al. The elastic properties of the Cryptococcus neoformans capsule. Biophys J. 2009;97:937–45. doi:10.1016/j.bpj.2009.04.043
  • Cordero RJ, Pontes B, Frases S, et al. Antibody binding to Cryptococcus neoformans impairs budding by altering capsular mechanical properties. J Immunol. 2013;190:317–23. doi:10.4049/jimmunol.1202324
  • Guazzelli L, McCabe O, Oscarson S. Synthesis of part structures of Cryptococcus neoformans serotype C capsular polysaccharide. Carbohydrate research. 2016;433:5–13. doi:10.1016/j.carres.2016.06.012
  • Oscarson S, Alpe M, Svahnberg P, et al. Synthesis and immunological studies of glycoconjugates of Cryptococcus neoformans capsular glucuronoxylomannan oligosaccharide structures. Vaccine. 2005;23:3961–72. doi:10.1016/j.vaccine.2005.02.029
  • Merrifield EH, Stephen aM. Structural investigations of two capsular polysaccharides from Cryptococcus neoformans. Carb Res. 1980;86:69–76. doi:10.1016/S0008-6215(00)84582-6
  • Cherniak R, Reiss E, Slodki ME, et al. Structure and antigenic activity of the capsular polysaccharide of Cryptococcus neoformans serotype A. Mol Immunol. 1980;17:1025–32. doi:10.1016/0161-5890(80)90096-6
  • Belay T, Cherniak R, Kozel TR, et al. Reactivity patterns and epitope specificities of anti-Cryptococcus neoformans monoclonal antibodies by enzyme-linked immunosorbent assay and dot enzyme assay. Infect Immun. 1997;65:718–28.
  • Kozel TR, Levitz SM, Dromer F, et al. Antigenic and biological characteristics of mutant strains of Cryptococcus neoformans lacking capsular O acetylation or xylosyl side chains. Infect Immun. 2003;71:2868–75. doi:10.1128/IAI.71.5.2868-2875.2003
  • Cherniak R, Valafar H, Morris LC, et al. Cryptococcus neoformans chemotyping by quantitative analysis of 1H NMR spectra of glucuronoxylomannans using a computer simulated artificial neural network. Clin Diagn Lab Immunol. 1998;5:146–59.
  • Nimrichter L, Frases S, Cinelli LP, et al. Self-aggregation of Cryptococcus neoformans capsular glucuronoxylomannan is dependent on divalent cations. Eukaryot Cell. 2007;6:1400–10. doi:10.1128/EC.00122-07
  • McFadden DC, Fries BC, Wang F, et al. Capsule structural heterogeneity and antigenic variation in Cryptococcus neoformans. Eukaryot Cell. 2007;6:1464–73. doi:10.1128/EC.00162-07
  • Park YD, Shin S, Panepinto J, et al. A role for LHC1 in higher order structure and complement binding of the Cryptococcus neoformans capsule. PLoS Pathog. 2014;10:e1004037. doi:10.1371/journal.ppat.1004037
  • Levitz SM, Specht CA. The molecular basis for the immunogenicity of Cryptococcus neoformans mannoproteins. FEMS Yeast Res. 2006;6:513–24. doi:10.1111/j.1567-1364.2006.00071.x
  • Madu UL, Ogundeji AO, Mochochoko BM, et al. Cryptococcal 3-Hydroxy Fatty Acids Protect Cells Against Amoebal Phagocytosis. Front Microbiol. 2015;6:1351. doi:10.3389/fmicb.2015.01351
  • Nicola AM, Frases S, Casadevall A. Lipophilic dye staining of Cryptococcus neoformans extracellular vesicles and capsule. Eukaryot Cell. 2009;8:1373–80. doi:10.1128/EC.00044-09
  • Heiss C, Klutts JS, Wang Z, et al. The structure of Cryptococcus neoformans galactoxylomannan contains beta-D-glucuronic acid. Carbohydrate Research. 2009;344:915–20. doi:10.1016/j.carres.2009.03.003
  • Jesus MD, Nicola AM, Chow SK, et al. Glucuronoxylomannan, galactoxylomannan, and mannoprotein occupy spatially separate and discrete regions in the capsule of Cryptococcus neoformans. Virulence. 2010;1:500–8. doi:10.4161/viru.1.6.13451
  • Vaishnav VV, Bacon BE, O'Neill M, et al. Structural characterization of the galactoxylomannan of Cryptococcus neoformans Cap67. Carbohydrate research. 1998;306:315–30. doi:10.1016/S0008-6215(97)10058-1
  • Previato JO, Vinogradov E, Maes E, et al. Distribution of the O-acetyl groups and beta-galactofuranose units in galactoxylomannans of the opportunistic fungus Cryptococcus neoformans. Glycobiology. 2017;27:582–92.
  • Azurmendi HF, Battistel MD, Zarb J, et al. The beta-reducing end in alpha(2-8)-polysialic acid constitutes a unique structural motif. Glycobiology. 2017;27:900–11. doi:10.1093/glycob/cwx025
  • Battistel MD, Shangold M, Trinh L, et al. Evidence for helical structure in a tetramer of alpha2-8 sialic acid: unveiling a structural antigen. J Am Chem Soc. 2012;134:10717–20. doi:10.1021/ja300624j
  • Zaragoza O, Casadevall A. Experimental modulation of capsule size in Cryptococcus neoformans. Biol Proced Online. 2004;6:10–5. doi:10.1251/bpo68
  • Zaragoza O, Telzak A, Bryan RA, et al. The polysaccharide capsule of the pathogenic fungus Cryptococcus neoformans enlarges by distal growth and is rearranged during budding. Mol Microbiol. 2006;59:67–83. doi:10.1111/j.1365-2958.2005.04928.x
  • Garcia-Rodas R, Cordero RJ, Trevijano-Contador N, et al. Capsule Growth in Cryptococcus neoformans Is Coordinated with Cell Cycle Progression. MBio. 2014;5:e00945–14. doi:10.1128/mBio.00945-14.
  • Feldmesser M, Kress Y, Casadevall A. Dynamic changes in the morphology of Cryptococcus neoformans during murine pulmonary infection. Microbiology. 2001;147:2355–65. doi:10.1099/00221287-147-8-2355
  • Cordero RJ, Bergman A, Casadevall A. Temporal behavior of capsule enlargement by Cryptococcus neoformans. Eukaryotic Cell. 2013;12:1383–8. doi:10.1128/EC.00163-13
  • Charlier C, Chretien F, Baudrimont M, et al. Capsule structure changes associated with Cryptococcus neoformans crossing of the blood-brain barrier. Am J Pathol. 2005;166:421–32. doi:10.1016/S0002-9440(10)62265-1
  • Vartivarian SE, Anaissie EJ, Cowart RE, et al. Regulation of cryptococcal capsular polysaccharide by iron. J Infect Dis. 1993;167:186–90. doi:10.1093/infdis/167.1.186
  • Granger DL, Perfect JR, Durack DT. Virulence of Cryptococcus neoformans. Regulation of capsule synthesis by carbon dioxide. J Clin Invest. 1985;76:508–16.
  • Guimaraes AJ, Frases S, Cordero RJ, et al. Cryptococcus neoformans responds to mannitol by increasing capsule size in vitro and in vivo. Cell Microbiol. 2010;12:740–53. doi:10.1111/j.1462-5822.2010.01430.x
  • Dystra MA, Friedman L, Murphy JW. Capsule size of Cryptococcus neoformans: control and relationship to virulence. Infect Immun. 1977;16:129–35.
  • Feldmesser M, Rivera J, Kress Y, et al. Antibody interactions with the capsule of Cryptococcus neoformans. Infect Immun. 2000;68:3642–50. doi:10.1128/IAI.68.6.3642-3650.2000
  • Ophir T, Gutnick DL. A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol. 1994;60:740–5.
  • Zaragoza O, Chrisman CJ, Castelli MV, et al. Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival. Cell Microbiol. 2008;10:2043–57. doi:10.1111/j.1462-5822.2008.01186.x
  • Steenbergen JN, Shuman HA, Casadevall A. Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proc Natl Acad Sci. 2001;18:15245–50. doi:10.1073/pnas.261418798
  • Chrisman CJ, Albuquerque P, Guimaraes AJ, et al. Phospholipids trigger Cryptococcus neoformans capsule enlargement during interactions with amoebae and macrophages. Plos Pathogens. 2011;7:e1002047. doi:10.1371/journal.ppat.1002047
  • Macura N, Zhang T, Casadevall A. The dependence of macrophage phagocytic efficacy on antibody concentration. Infect Immun. 2007;75:1904–15. doi:10.1128/IAI.01258-06.
  • Zaragoza O, Casadevall A. Antibodies produced in response to Cryptococcus neoformans pulmonary infection in mice have characteristics of non-protective antibodies. Infect Immun. 2004;72:4271–4. doi:10.1128/IAI.72.7.4271-4274.2004
  • Macher AM, Bennett JE, Gadek JE, et al. Complement depletion in cryptococcal sepsis. J Immunol. 1978;120:1686–90.
  • Rohatgi S, Pirofski LA. Host immunity to Cryptococcus neoformans. Future microbiology. 2015;10:565–81. doi:10.2217/fmb.14.132
  • Zaragoza O, Taborda CP, Casadevall A. The efficacy of complement-mediated phagocytosis of Cryptococcus neoformans is dependent on the location of C3 in the polysaccharide capsule and involves both direct and indirect C3-mediated interactions. Eur J Immunol. 2003;33:1957–67. doi:10.1002/eji.200323848
  • Mukherjee S, Lee SC, Casadevall A. Antibodies to Cryptococcus neoformans glucuronoxylomannan enhance antifungal activity of murine macrophages. Infect Immun. 1995;63:573–9.
  • Casadevall A, Perfect JR. Cryptococcus neoformans. Washington, DC: American Society for Microbiology; 1998
  • Cherniak R, Morris LC, Belay T, et al. Variation in the structure of glucuronoxylomannan in isolates from patients with recurrent cryptococcal meningitis. Infect Immun. 1995;63:1899–905.
  • Chen Y, Farrer RA, Giamberardino C, et al. Microevolution of Serial Clinical Isolates of Cryptococcus neoformans var. grubii and C gattii MBio. 2017;8.
  • Bouklas T, Fries BC. Aging: an emergent phenotypic trait that contributes to the virulence of Cryptococcus neoformans. Future microbiology. 2015;10:191–7. doi:10.2217/fmb.14.124
  • Vecchiarelli A, Pericolini E, Gabrielli E, et al. Cryptococcus neoformans galactoxylomannan is a potent negative immunomodulator, inspiring new approaches in anti-inflammatory immunotherapy. Immunotherapy. 2011;3:997–1005. doi:10.2217/imt.11.86
  • Albuquerque PC, Fonseca FL, Dutra FF, et al. Cryptococcus neoformans glucuronoxylomannan fractions of different molecular masses are functionally distinct. Future microbiology. 2014;9:147–61. doi:10.2217/fmb.13.163
  • Monari C, Bevilacqua S, Piccioni M, et al. A microbial polysaccharide reduces the severity of rheumatoid arthritis by influencing Th17 differentiation and proinflammatory cytokines production. Journal of immunology (Baltimore, Md : 1950). 2009;183:191–200. doi:10.4049/jimmunol.0804144
  • Piccioni M, Monari C, Kenno S, et al. A purified capsular polysaccharide markedly inhibits inflammatory response during endotoxic shock. Infect Immun. 2013;81:90–8. doi:10.1128/IAI.00553-12
  • Shoham S, Huang C, Chen JM, et al. Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule. J Immunol. 2001;166:4620–6. doi:10.4049/jimmunol.166.7.4620
  • Lipovsky MM, Gekker G, Anderson WR, et al. Phagocytosis of nonopsonized Cryptococcus neoformans by swine microglia involves CD14 receptors. Clinical immunology and immunopathology. 1997;84:208–11. doi:10.1006/clin.1997.4381
  • Robertson EJ, Najjuka G, Rolfes MA, et al. Cryptococcus neoformans ex vivo capsule size is associated with intracranial pressure and host immune response in HIV-associated cryptococcal meningitis. The Journal of infectious diseases. 2014;209:74–82. doi:10.1093/infdis/jit435
  • Bojarczuk A, Miller KA, Hotham R, et al. Cryptococcus neoformans Intracellular Proliferation and Capsule Size Determines Early Macrophage Control of Infection. Scientific reports. 2016;6:21489. doi:10.1038/srep21489
  • Sabiiti W, Robertson E, Beale MA, et al. Efficient phagocytosis and laccase activity affect the outcome of HIV-associated cryptococcosis. J Clin Invest. 2014;124:2000–8. doi:10.1172/JCI72950
  • Urai M, Kaneko Y, Ueno K, et al. Evasion of Innate Immune Responses by the Highly Virulent Cryptococcus gattii by Altering Capsule Glucuronoxylomannan Structure. Frontiers in cellular and infection microbiology. 2015;5:101.
  • Pool A, Lowder L, Wu Y, et al. Neurovirulence of Cryptococcus neoformans determined by time course of capsule accumulation and total volume of capsule in the brain. J Neurovirol. 2013;19:228–38. doi:10.1007/s13365-013-0169-7
  • Rivera J, Feldmesser M, Cammer M, et al. Organ-dependent variation of capsule thickness in Cryptococcus neoformans during experimental murine infection. Infect Immun. 1998;66:5027–30.
  • Bowen A, Wear MP, Cordero RJ, et al. A Monoclonal Antibody to Cryptococcus neoformans Glucuronoxylomannan Manifests Hydrolytic Activity for Both Peptides and Polysaccharides. The Journal of biological chemistry. 2017;292:417–34. doi:10.1074/jbc.M116.767582
  • Trevijano-Contador N, Rossi SA, Alves E, et al. Capsule Enlargement in Cryptococcus neoformans Is Dependent on Mitochondrial Activity. Front Microbiol. 2017;8:1423. doi:10.3389/fmicb.2017.01423
  • Nguyen LN, Lopes LC, Cordero RJ, et al. Sodium butyrate inhibits pathogenic yeast growth and enhances the functions of macrophages. The Journal of antimicrobial chemotherapy. 2011;66:2573–80. doi:10.1093/jac/dkr358
  • Zaragoza O, Mihu C, Casadevall A, et al. Effect of amphotericin B on capsule and cell size in Cryptococcus neoformans during murine infection. Antimicrob Agents Chemother. 2005;49:4358–61. doi:10.1128/AAC.49.10.4358-4361.2005
  • Kim SJ, Kwon-Chung KJ, Milne GWA, et al. Relationship between polyene resistance and sterol compositions in Cryptococcus neoformans. Antimicrob Agents Chemotherap. 1975;7:99–106. doi:10.1128/AAC.7.1.99
  • Santana AG, Tysoe C, Hu G, et al. Fungal Glycolipid Hydrolase Inhibitors and Their Effect on Cryptococcus neoformans. Chembiochem. 2017;18:284–90. doi:10.1002/cbic.201600538
  • Vitale RG, Pascuccelli V, Afeltra J. Influence of capsule size on the in vitro activity of antifungal agents against clinical Cryptococcus neoformans var. grubii strains Journal of medical microbiology. 2012;61:384–8. doi:10.1099/jmm.0.036152-0
  • Yoneda A, Doering TL. Regulation of Cryptococcus neoformans capsule size is mediated at the polymer level. Eukaryotic cell. 2008;7:546–9. doi:10.1128/EC.00437-07
  • Yoneda A, Doering TL. A eukaryotic capsular polysaccharide is synthesized intracellularly and secreted via exocytosis. Mol Biol Cell. 2006;17:5131–40. doi:10.1091/mbc.E06-08-0701
  • Rodrigues ML, Nimrichter L, Oliveira DL, et al. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot Cell. 2007;6:48–59. doi:10.1128/EC.00318-06
  • Godinho RM, Crestani J, Kmetzsch L, et al. The vacuolar-sorting protein Snf7 is required for export of virulence determinants in members of the Cryptococcus neoformans complex. Sci Rep. 2014;4:6198. doi:10.1038/srep06198
  • Rizzo J, Oliveira DL, Joffe LS, et al. Role of the Apt1 protein in polysaccharide secretion by Cryptococcus neoformans. Eukaryotic cell. 2014;13:715–26. doi:10.1128/EC.00273-13
  • Kmetzsch L, Joffe LS, Staats CC, et al. Role for Golgi reassembly and stacking protein (GRASP) in polysaccharide secretion and fungal virulence. Mol Microbiol. 2011;81:206–18. doi:10.1111/j.1365-2958.2011.07686.x
  • Sebolai OM, Pohl CH, Botes PJ, et al. 3-hydroxy fatty acids found in capsules of Cryptococcus neoformans. Canadian journal of microbiology. 2007;53:809–12. doi:10.1139/W07-045
  • Oliveira DL, Nakayasu ES, Joffe LS, et al. Biogenesis of extracellular vesicles in yeast: Many questions with few answers. Commun Integr Biol. 2010;3:533–5. doi:10.4161/cib.3.6.12756
  • Reese AJ, Doering TL. Cell wall alpha-1,3-glucan is required to anchor the Cryptococcus neoformans capsule. Molecular microbiology. 2003;50:1401–9. doi:10.1046/j.1365-2958.2003.03780.x
  • Ramos CL, Fonseca FL, Rodrigues J, et al. Chitin-like molecules associate with Cryptococcus neoformans glucuronoxylomannan to form a glycan complex with previously unknown properties. Eukaryot Cell. 2012;11:1086–94. doi:10.1128/EC.00001-12