2,997
Views
37
CrossRef citations to date
0
Altmetric
Research Paper

Both live and dead Enterococci activate Caenorhabditis elegans host defense via immune and stress pathways

ORCID Icon & ORCID Icon
Pages 683-699 | Received 30 Jan 2018, Accepted 01 Feb 2018, Published online: 19 Mar 2018

References

  • Irazoqui JE, Troemel ER, Feinbaum RL, et al. Distinct Pathogenesis and Host Responses during Infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathog. 2010;6:e1000982. doi:10.1371/journal.ppat.1000982
  • Pujol N, Link EM, Liu LX, et al. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr Biol. 2001;11:809–821. doi:10.1016/S0960-9822(01)00241-X
  • Couillault C, Pujol N, Reboul J, et al. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat Immunol. 2004;5:488–494. doi:10.1038/ni1060
  • Brandt JP, Ringstad N. Toll-like Receptor Signaling Promotes Development and Function of Sensory Neurons Required for a C. elegans Pathogen-Avoidance Behavior. Curr Biol. 2015;25:2228–2237. doi:10.1016/j.cub.2015.07.037
  • Vance RE, Isberg RR, Portnoy DA. Patterns of Pathogenesis: Discrimination of Pathogenic and Nonpathogenic Microbes by the Innate Immune System. Cell Host and Microbe. 2009. doi:10.1016/j.chom.2009.06.007
  • Estes K a., Dunbar TL, Powell JR, et al. bZIP transcription factor zip-2 mediates an early response to Pseudomonas aeruginosa infection in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2010;107:2153–2158. doi:10.1073/pnas.0914643107
  • McEwan DL, Kirienko NV, Ausubel FM. Host translational inhibition by Pseudomonas aeruginosa Exotoxin A Triggers an immune response in Caenorhabditis elegans. Cell Host Microbe. 2012;11:364–374. doi:10.1016/j.chom.2012.02.007
  • Dunbar TL, Yan Z, Balla KM, et al. C. elegans detects pathogen-induced translational inhibition to activate immune signaling. Cell Host Microbe. 2012;11:375–386. doi:10.1016/j.chom.2012.02.008
  • Govindan JA, Jayamani E, Zhang X, et al. Lipid signalling couples translational surveillance to systemic detoxification in Caenorhabditis elegans. Nat Cell Biol. 2015;17:1294–1303. doi:10.1038/ncb3229
  • Liu Y, Samuel BS, Breen PC, et al. Caenorhabditis elegans pathways that surveil and defend mitochondria. Nature. 2014;508:406–410. doi:10.1038/nature13204
  • Melo JA, Ruvkun G. Inactivation of Conserved C. elegans Genes Engages Pathogen- and Xenobiotic-Associated Defenses. Cell. 2012;149:452–466. doi:10.1016/j.cell.2012.02.050
  • Garsin DA, Sifri CD, Mylonakis E, et al. A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci U S A. 2001;98:10892–10897. doi:10.1073/pnas.191378698
  • Powell JR, Ausubel FM. Models of Caenorhabditis elegans infection by bacterial and fungal pathogens. Methods Mol Biol. 2008;415:403–427.
  • Cruz MR, Graham CE, Gagliano BC, et al. Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Infect Immun. 2013;81:189–200. doi:10.1128/IAI.00914-12
  • Troemel ER, Chu SW, Reinke V, et al. p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet. 2006;2:e183. doi:10.1371/journal.pgen.0020183
  • Kim DH, Feinbaum R, Alloing G, et al. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science. 2002;297:623–626. doi:10.1126/science.1073759
  • Powell JR, Kim DH, Ausubel FM. The G protein-coupled receptor FSHR-1 is required for the Caenorhabditis elegans innate immune response. Proc Natl Acad Sci U S A. 2009;106:2782–2787. doi:10.1073/pnas.0813048106
  • Miller EV, Grandi LN, Giannini JA, et al. The Conserved G-Protein Coupled Receptor FSHR-1 Regulates Protective Host Responses to Infection and Oxidative Stress. PLoS One. 2015;10:e0137403. doi:10.1371/journal.pone.0137403
  • Irazoqui JE, Ng A, Xavier RJ, et al. Role for beta-catenin and HOX transcription factors in Caenorhabditis elegans and mammalian host epithelial-pathogen interactions. Proc Natl Acad Sci U S A. 2008;105:17469–17474. doi:10.1073/pnas.0809527105
  • Mcghee JD. The Caenorhabditis elegans intestine. In WormBook. 2007. p. 347–367.
  • Gravato-Nobre MJ, Vaz F, Filipe S, et al. The Invertebrate Lysozyme Effector ILYS-3 Is Systemically Activated in Response to Danger Signals and Confers Antimicrobial Protection in C. elegans. PLoS Pathog. 2016;12:e1005826. doi:10.1371/journal.ppat.1005826
  • Geiss GK, Bumgarner RE, Birditt B, et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol. 2008;26:317–325. doi:10.1038/nbt1385
  • Mori M a., Raghavan P, Thomou T, et al. Role of microRNA processing in adipose tissue in stress defense and longevity. Cell Metab. 2012;16:336–347. doi:10.1016/j.cmet.2012.07.017
  • Mizuno T, Hisamoto N, Terada T, et al. The Caenorhabditis elegans MAPK phosphatase VHP-1 mediates a novel JNK-like signaling pathway in stress response. EMBO J. 2004;23:2226–2234. doi:10.1038/sj.emboj.7600226
  • An JH, Blackwell TK. SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev. 2003;17:1882–1893. doi:10.1101/gad.1107803
  • Epstein AC, Gleadle JM, McNeill LA, et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001;107:43–54. doi:10.1016/S0092-8674(01)00507-4
  • Semenza GL. HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell. 2001;107:1–3. doi:10.1016/S0092-8674(01)00518-9
  • van der Hoeven R, McCallum KC, Cruz MR, et al. Ce-Duox1/BLI-3 Generated Reactive Oxygen Species Trigger Protective SKN-1 Activity via p38 MAPK Signaling during Infection in C. elegans. PLoS Pathog. 2011;7:e1002453. doi:10.1371/journal.ppat.1002453
  • Papp D, Csermely P, Sőti C. A Role for SKN-1/Nrf in Pathogen Resistance and Immunosenescence in Caenorhabditis elegans. PLoS Pathog. 2012;8:e1002673. doi:10.1371/journal.ppat.1002673
  • Taubert S, Ward JD, Yamamoto KR. Nuclear hormone receptors in nematodes: Evolution and function. Molecular and Cellular Endocrinology. 2011 doi:10.1016/j.mce.2010.04.021;
  • Pukkila-Worley R, Feinbaum R, Kirienko NV, et al. Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection. PLoS Genet. 2012;8:e1002733. doi:10.1371/journal.pgen.1002733
  • Anyanful A, Easley KA, Benian GM, et al. 2009; Conditioning protects C. elegans from lethal effects of enteropathogenic E. coli by activating genes that regulate lifespan and innate immunity. Cell Host Microbe.5:450–462. doi:10.1016/j.chom.2009.04.012
  • Kim Y, Mylonakis E. Caenorhabditis elegans Immune Conditioning with the Probiotic Bacterium Lactobacillus acidophilus Strain NCFM Enhances Gram-Positive Immune Responses. Infect Immun. 2012;80:2500–2508. doi:10.1128/IAI.06350-11
  • Pham LN, Dionne MS, Shirasu-Hiza M, et al. A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog. 2007;3:e26. doi:10.1371/journal.ppat.0030026
  • Rangan KJ, Pedicord VA, Wang Y-C, et al. A secreted bacterial peptidoglycan hydrolase enhances tolerance to enteric pathogens. Science. 2016;353:1434–1437. doi:10.1126/science.aaf3552
  • Cezairliyan B, Vinayavekhin N, Grenfell-Lee D, et al. Identification of Pseudomonas aeruginosa Phenazines that Kill Caenorhabditis elegans. PLoS Pathog. 2013;9:e1003101. doi:10.1371/journal.ppat.1003101
  • Mahajan-Miklos S, Tan MW, Rahme LG, et al. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell. 1999;96:47–56. doi:10.1016/S0092-8674(00)80958-7
  • Meisel JD, Panda O, Mahanti P, et al. Chemosensation of Bacterial Secondary Metabolites Modulates Neuroendocrine Signaling and Behavior of C. elegans. Cell. 2014;159:267–280. doi:10.1016/j.cell.2014.09.011
  • Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77:71–94.
  • Huycke MM, Spiegel CA, Gilmore MS. Bacteremia caused by hemolytic, high-level gentamicin-resistant Enterococcus faecalis. Antimicrob Agents Chemother. 1991;35:1626–1634. doi:10.1128/AAC.35.8.1626
  • Yang JS, Nam HJ, Seo M, et al. OASIS: Online application for the survival analysis of lifespan assays performed in aging research. PLoS One. 2011;6:
  • Kamath RS, Ahringer J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods. 2003;30:313–321. doi:10.1016/S1046-2023(03)00050-1
  • Powell JR, Ausubel FM. Models of Caenorhabditis elegans infection by bacterial and fungal pathogens. Methods Mol Biol. 2008;415:403–427.
  • Thomas JH. Genetic analysis of defecation in Caenorhabditis elegans. Genetics. 1990;124:855–872.
  • Klaus B. An end to end workflow for differential gene expression using Affymetrix microarrays. F1000Res 5. 2016. doi:10.12688/f1000research.8967.1
  • Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 4:249–264. doi:10.1093/biostatistics/4.2.249
  • Irizarry RA, Bolstad BM, Collin F, et al. 2003; Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003;31:e15. doi:10.1093/nar/gng015
  • Bolstad BM, Irizarry RA, Astrand M, et al. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19:185–193. doi:10.1093/bioinformatics/19.2.185
  • Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. doi:10.1093/nar/gkv007
  • Alexa A, Rahnenfuhrer J. topGO: enrichment analysis for gene ontology. R package version 2. 2010.
  • Supek F, Bošnjak M, Škunca N, et al. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6:e21800. doi:10.1371/journal.pone.0021800