1,738
Views
9
CrossRef citations to date
0
Altmetric
Research Paper

An ecoimmunological approach to study evolutionary and ancient links between coagulation, complement and Innate immunity

ORCID Icon, , , , , , & show all
Pages 724-737 | Received 08 Nov 2017, Accepted 09 Feb 2018, Published online: 18 Apr 2018

References

  • Krem MM, Di Cera E. Evolution of enzyme cascades from embryonic development to blood coagulation. Trends Biochem Sci. 2002 Feb;27(2):67–74. doi:10.1016/S0968-0004(01)02007-2
  • Frick IM, Akesson P, Herwald H, et al. The contact system–a novel branch of innate immunity generating antibacterial peptides. Embo J. 2006 Nov 29;25(23):5569–78. doi:10.1038/sj.emboj.7601422
  • Tang YQ, Yeaman MR, Selsted ME. Antimicrobial peptides from human platelets. Infect Immun. 2002 Dec;70(12):6524–33. doi:10.1128/IAI.70.12.6524-6533.2002
  • Riedel T, Suttnar J, Brynda E, et al. Fibrinopeptides A and B release in the process of surface fibrin formation. Blood. 2011 Feb 3;117(5):1700–6. doi:10.1182/blood-2010-08-300301
  • Papareddy P, Rydengard V, Pasupuleti M, et al. Proteolysis of human thrombin generates novel host defense peptides. PLoS Pathog. 2010 Apr;6(4):e1000857. doi:10.1371/journal.ppat.1000857
  • Malmstrom E, Morgelin M, Malmsten M, et al. Protein C inhibitor–a novel antimicrobial agent. PLoS Pathog. 2009 Dec;5(12):e1000698. doi:10.1371/journal.ppat.1000698
  • Papareddy P, Kalle M, Kasetty G, et al. C-terminal peptides of tissue factor pathway inhibitor are novel host defense molecules. J Biol Chem. 2010 Sep 3;285(36):28387–98. doi:10.1074/jbc.M110.127019
  • Papareddy P, Kalle M, Sorensen OE, et al. Tissue factor pathway inhibitor 2 is found in skin and its C-terminal region encodes for antibacterial activity. PloS one. 2012;7(12):e52772. doi: 10.1371/journal.pone.0052772
  • Papareddy P, Kalle M, Sorensen OE, et al. The TFPI-2 derived peptide EDC34 improves outcome of gram-negative sepsis. PLoS Pathog. 2013 Dec;9(12):e1003803. doi: 10.1371/journal.ppat.1003803
  • Kalle M, Papareddy P, Kasetty G, et al. Proteolytic activation transforms heparin cofactor II into a host defense molecule. J Immunol. 2013 Jun 15;190(12):6303–10. doi:10.4049/jimmunol.1203030
  • Papareddy P, Kalle M, Bhongir RK, et al. Antimicrobial effects of helix D-derived peptides of human antithrombin III. J Biol Chem. 2014 Oct 24;289(43):29790–800. doi: 10.1074/jbc.M114.570465
  • Nordahl EA, Rydengård V, Nyberg P, et al. Activation of the complement system generates antibacterial peptides. Proc Natl Acad Sci U S A. 2004 Nov 30;101(48):16879–84. doi:10.1073/pnas.0406678101
  • Powers JP, Hancock RE. The relationship between peptide structure and antibacterial activity. Peptides. 2003 Nov;24(11):1681–91. doi:10.1016/j.peptides.2003.08.023
  • Bulet P, Stocklin R, Menin L. Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev. 2004 Apr;198:169–84. doi:10.1111/j.0105-2896.2004.0124.x
  • Yount NY, Bayer AS, Xiong YQ, et al. Advances in antimicrobial peptide immunobiology. Biopolymers. 2006 May 30;84(5):435–458. doi:10.1002/bip.20543
  • Durr UH, Sudheendra US, Ramamoorthy A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta. 2006 Apr 4;1758(9):1408–25. doi:10.1016/j.bbamem.2006.03.030
  • Lehrer RI, Ganz T. Cathelicidins: a family of endogenous antimicrobial peptides. Curr Opin Hematol. 2002 Jan;9(1):18–22. doi:10.1097/00062752-200201000-00004
  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389–95. doi:10.1038/415389a
  • Lwaleed BA, Bass PS. Tissue factor pathway inhibitor: structure, biology and involvement in disease. J Pathol. 2006 Feb;208(3):327–39. doi: 10.1002/path.1871
  • Girard TJ, Warren LA, Novotny WF, et al. Functional significance of the Kunitz-type inhibitory domains of lipoprotein-associated coagulation inhibitor. Nature. 1989 Apr 6;338(6215):518–20. doi: 10.1038/338518a0
  • Mine S, Yamazaki T, Miyata T, et al. Structural mechanism for heparin-binding of the third Kunitz domain of human tissue factor pathway inhibitor. Biochemistry. 2002 Jan 8;41(1):78–85. doi: bi011299g [pii]
  • Crawley JT, Lane DA. The haemostatic role of tissue factor pathway inhibitor. Arterioscler Thromb Vasc Biol. 2008 Feb;28(2):233–42. doi: 10.1161/ATVBAHA.107.141606
  • Ohkura N, Enjyoji K, Kamikubo Y, et al. A novel degradation pathway of tissue factor pathway inhibitor: incorporation into fibrin clot and degradation by thrombin. Blood. 1997 Sep 1;90(5):1883–92.
  • Li A, Wun TC. Proteolysis of tissue factor pathway inhibitor (TFPI) by plasmin: effect on TFPI activity. Thromb Haemost. 1998 Sep;80(3):423–7.
  • Cunningham AC, Hasty KA, Enghild JJ, et al. Structural and functional characterization of tissue factor pathway inhibitor following degradation by matrix metalloproteinase-8. Biochem J. 2002 Oct 15;367(Pt 2):451–8. doi: 10.1042/BJ20020696
  • Yun TH, Cott JE, Tapping RI, et al. Proteolytic inactivation of tissue factor pathway inhibitor by bacterial omptins. Blood. 2009 Jan 29;113(5):1139–48. doi: 10.1182/blood-2008-05-157180
  • Park CT, Creasey AA, Wright SD. Tissue factor pathway inhibitor blocks cellular effects of endotoxin by binding to endotoxin and interfering with transfer to CD14. Blood. 1997 Jun 15;89(12):4268–74.
  • Hembrough TA, Ruiz JF, Swerdlow BM, et al. Identification and characterization of a very low density lipoprotein receptor-binding peptide from tissue factor pathway inhibitor that has antitumor and antiangiogenic activity. Blood. 2004 May 1;103(9):3374–80. doi: 10.1182/blood-2003-07-2234
  • Wesselschmidt R, Likert K, Girard T, et al. Tissue factor pathway inhibitor: the carboxy-terminus is required for optimal inhibition of factor Xa. Blood. 1992 Apr 15;79(8):2004–10.
  • Ettelaie C, Adam JM, James NJ, et al. The role of the C-terminal domain in the inhibitory functions of tissue factor pathway inhibitor. FEBS Lett. 1999 Dec 17;463(3):341–4. doi:10.1016/S0014-5793(99)01663-4
  • Maroney SA, Ferrel JP, Pan S, et al. Temporal expression of alternatively spliced forms of tissue factor pathway inhibitor in mice. J Thromb Haemost. 2009 Jul;7(7):1106–13. doi: 10.1111/j.1538-7836.2009.03454.x
  • DeLano WL, Ultsch MH, de Vos AM, et al. Convergent solutions to binding at a protein-protein interface. Science. 2000 Feb 18;287(5456):1279–83. doi:10.1126/science.287.5456.1279
  • von Pawel-Rammingen U, Johansson BP, Bjorck L. IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. The EMBO journal. 2002 Apr 2;21(7):1607–15. doi: 10.1093/emboj/21.7.1607
  • Cope I, Mitchell P. Plasmin and plasminogen levels in pregnancy. Aust N Z J Obstet Gynaecol. 1965 Aug;5(3):152–5. doi:10.1111/j.1479-828X.1965.tb00310.x
  • Ponczek MB, Gailani D, Doolittle RF. Evolution of the contact phase of vertebrate blood coagulation. J Thromb Haemost. 2008 Nov;6(11):1876–83. doi: 10.1111/j.1538-7836.2008.03143.x
  • Conway EM. Reincarnation of ancient links between coagulation and complement. J Thromb Haemost. 2015 Jun;13(Suppl 1):S121–32. doi: 10.1111/jth.12950
  • Ranasinghe S, McManus DP. Structure and function of invertebrate Kunitz serine protease inhibitors. Dev Comp Immunol. 2013 Mar;39(3):219–27. doi: 10.1016/j.dci.2012.10.005
  • Maroney SA, Mast AE. New insights into the biology of tissue factor pathway inhibitor. J Thromb Haemost. 2015 Jun;13(Suppl 1):S200–7. doi: 10.1111/jth.12897
  • Keizer MP, Pouw RB, Kamp AM, et al. TFPI inhibits lectin pathway of complement activation by direct interaction with MASP-2. Eur J Immunol. 2015 Feb;45(2):544–50. doi: 10.1002/eji.201445070
  • Francischetti IM, Valenzuela JG, Andersen JF, et al. Ixolaris, a novel recombinant tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick, Ixodes scapularis: identification of factor X and factor Xa as scaffolds for the inhibition of factor VIIa/tissue factor complex. Blood. 2002 May 15;99(10):3602–12. doi: 10.1182/blood-2001-12-0237
  • Modica MV, Lombardo F, Franchini P, et al. The venomous cocktail of the vampire snail Colubraria reticulata (Mollusca, Gastropoda). BMC Genomics. 2015 Jun 09;16:441. doi: 10.1186/s12864-015-1648-4
  • Campbell CL, Vandyke KA, Letchworth GJ, et al. Midgut and salivary gland transcriptomes of the arbovirus vector Culicoides sonorensis (Diptera: Ceratopogonidae). Insect Mol Biol. 2005 Apr;14(2):121–36. doi: 10.1111/j.1365-2583.2004.00537.x
  • Nonaka M, Kimura A. Genomic view of the evolution of the complement system. Immunogenetics. 2006 Sep;58(9):701–13. doi: 10.1007/s00251-006-0142-1
  • Nonaka M, Yoshizaki F. Evolution of the complement system. Mol Immunol. 2004 Feb;40(12):897–902. doi:10.1016/j.molimm.2003.10.009
  • Nonaka M. Evolution of the complement system. Subcell Biochem. 2014;80:31–43. doi: 10.1007/978-94-017-8881-6_3
  • Sun Y, Wei Z, Li N, et al. A comparative overview of immunoglobulin genes and the generation of their diversity in tetrapods. Dev Comp Immunol. 2013 Jan-Feb;39(1–2):103–9. doi: 10.1016/j.dci.2012.02.008
  • Semba U, Shibuya Y, Okabe H, et al. Whale Hageman factor (factor XII): prevented production due to pseudogene conversion. Thromb Res. 1998 Apr 01;90(1):31–7. doi:10.1016/S0049-3848(97)00307-1
  • Kasetty G, Smeds E, Holmberg E, et al. Vertebrate TFPI-2 C-terminal peptides exert therapeutic applications against Gram-negative infections. BMC Microbiol. 2016;16(1):129. doi: 10.1186/s12866-016-0750-3
  • Tamura K, Stecher G, Peterson D, et al. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013 Dec;30(12):2725–9. doi: 10.1093/molbev/mst197
  • Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol. 1999 Sep 17;292(2):195–202. doi: 10.1006/jmbi.1999.3091
  • Buchan DW, Minneci F, Nugent TC, et al. Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W349–57. doi: 10.1093/nar/gkt381
  • Drozdetskiy A, Cole C, Procter J, et al. JPred4: a protein secondary structure prediction server. Nucleic Acids Res. 2015 Jul 01;43(W1):W389–94. doi: 10.1093/nar/gkv332
  • Lamiable A, Thevenet P, Rey J, et al. PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res. 2016 Jul 08;44(W1):W449–54. doi: 10.1093/nar/gkw329
  • Thevenet P, Shen Y, Maupetit J, et al. PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W288–93. doi: 10.1093/nar/gks419
  • Shen Y, Maupetit J, Derreumaux P, et al. Improved PEP-FOLD Approach for Peptide and Miniprotein Structure Prediction. J Chem Theory Comput. 2014 Oct 14;10(10):4745–58. doi: 10.1021/ct500592m
  • Madura WLJJCaJD. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79(2):926–935. doi:10.1063/1.445869
  • AMBER 2017, University of California, San Francisco. [Internet]. 2017.
  • Duan Y, Wu C, Chowdhury S, et al. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem. 2003 Dec;24(16):1999–2012. doi: 10.1002/jcc.10349
  • Mirza MU, Rafique S, Ali A, et al. Erratum: Towards peptide vaccines against Zika virus: Immunoinformatics combined with molecular dynamics simulations to predict antigenic epitopes of Zika viral proteins. Sci Rep. 2017 Apr 11;7:44633. doi: 10.1038/srep44633
  • Kozakov D, Beglov D, Bohnuud T, et al. How good is automated protein docking? Proteins. 2013 Dec;81(12):2159–66. doi: 10.1002/prot.24403
  • Kozakov D, Hall DR, Xia B, et al. The ClusPro web server for protein-protein docking. Nat Protoc. 2017 Feb;12(2):255–278. doi: 10.1038/nprot.2016.169
  • Kiyoshi M, Caaveiro JM, Kawai T, et al. Structural basis for binding of human IgG1 to its high-affinity human receptor FcgammaRI. Nat Commun. 2015 Apr 30;6:6866. doi: 10.1038/ncomms7866
  • Saphire EO, Parren PW, Pantophlet R, et al. Crystal structure of a neutralizing human IGG against HIV-1: a template for vaccine design. Science. 2001 Aug 10;293(5532):1155–9. doi: 10.1126/science.1061692
  • Gaboriaud C, Juanhuix J, Gruez A, et al. The crystal structure of the globular head of complement protein C1q provides a basis for its versatile recognition properties. J Biol Chem. 2003 Nov 21;278(47):46974–82. doi: 10.1074/jbc.M307764200