2,094
Views
17
CrossRef citations to date
0
Altmetric
Letter to the editor

Generous hosts: Why the larvae of greater wax moth, Galleria mellonella is a perfect infectious host model?

ORCID Icon
Pages 860-865 | Received 05 Feb 2018, Accepted 13 Mar 2018, Published online: 04 May 2018

References

  • Tsai CJ-Y, Loh JMS, Proft T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence. 2016;7:214–229.
  • Bergin D, Murphy L, Keenan J, et al. Pre-exposure to yeast protects larvae of Galleria mellonella from a subsequent lethal infection by Candida albicans and is mediated by the increased expression of antimicrobial peptides. Microbes Infect. 2006;8:2105–2112.
  • Ramarao, N., C. Nielsen-Leroux, et al. The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. J Vis Exp. 2012;70:e4392.
  • Champion OL, Wagley S, Titball RW. Galleria mellonella as a model host for microbiological and toxin research. Virulence. 2016;7:840–845.
  • Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annu Rev Immunol. 2007;25:697–743.
  • Harding CR, Schroeder GN, Collins JW, et al. Use of Galleria mellonella as a Model organism to study Legionella pneumophila infection. J Vis Exp. 2013;81:e50964.
  • Navarro-Velasco GY, Prados-Rosales RC, Ortíz-Urquiza A, et al. Galleria mellonella as model host for the trans-kingdom pathogen Fusarium oxysporum. Fungal Genet Biol. 2011;48:1124mdash;1129.
  • Seed KD, Dennis JJ. Experimental bacteriophage therapy increases survival of Galleria mellonella larvae infected with clinically relevant strains of the Burkholderia cepacia complex. Antimicrob Agents Chemother. 2009;53:2205–2208.
  • Fuchs BB, O'Brien E, Khoury JB El, et al. Methods for using Galleria mellonella as a model host to study fungal pathogenesis. Virulence. 2010;1:475–482.
  • Wyatt GR, Loughheed TC, Wyatt SS. The chemistry of insect hemolymph; organic components of the hemolymph of the silkworm, Bombyx mori, and two other species. J Gen Physiol. 1956;39:853–868.
  • Wyatt GR, Kalf GF. The chemistry of insect hemolymph. II. Trehalose and other carbohydrates. J Gen Physiol. 1957;40:833–847.
  • Thomas KK. Isolation and partial characterization of the haemolymph lipoproteins of the wax moth, Galleria mellonella. Insect Biochem. 1979;9:211–219.
  • Hanzal R, Jegorov A. Changes in free amino acid composition in haemolymph of larvae of the wax moth, Galleria mellonella L., during cold acclimation. Comp Biochem Physiol Part A Physiol. 1991;100:957–962.
  • Yendol WG. Fatty acid composition of Galleria larvae, hemolymph, and diet (Lepidoptera: Galleriidae). Ann Entomol Soc Am. 1970;63:339–341.
  • Killiny N, Hijaz F, El-Shesheny I, et al. Metabolomic analyses of the haemolymph of the Asian citrus psyllid Diaphorina citri, the vector of huanglongbing. Physiol Entomol. 2017;42:134–145.
  • Cheung PYK, Grula EA, Satayamurthy N, et al. Presence of free putrescine in the haemolymph of corn earworm (Heliothis zea) larvae. Insect Biochem. 1982;12:41–48.
  • Silva ECC, Masui DC, Furriel RPM, et al. Regulation by the exogenous polyamine spermidine of Na,K-ATPase activity from the gills of the euryhaline swimming crab Callinectes danae (Brachyura, Portunidae). Comp Biochem Physiol Part B Biochem Mol Biol. 2008;149:622–629.
  • Schneider BL, Hernandez VJ, Reitzer L. Putrescine catabolism is a metabolic response to several stresses in Escherichia coli. Mol Microbiol. 2013;88:537–350.
  • Teulier L, Weber J-M, Crevier J, et al. Proline as a fuel for insect flight: enhancing carbohydrate oxidation in hymenopterans. Proceedings Biol Sci. 2016;283:20160333.
  • Schartau W, Leidescher T. Composition of the hemolymph of the tarantula Eurypelma californicum. J Comp Physiol B. 1983;152:73–77.
  • Visser B, Willett DS, Harvey JA, et al. Concurrence in the ability for lipid synthesis between life stages in insects. R Soc open Sci. 2017;4:160815.
  • Stanley D, Haas E, Miller J. Eicosanoids: Exploiting insect immunity to improve biological control programs. Insects. 2012;3:492–510.
  • Arrese EL, Soulages JL. Insect fat body: Energy, metabolism, and regulation. Annu Rev Entomol. 2010;55:207–225.
  • Elbein AD, Pan YT, Pastuszak I, et al. New insights on trehalose: A multifunctional molecule. Glycobiology. 2003;13:17R–27R.
  • Wang XH, Qi XL, Kang L. Geographic differences on accumulation of sugars and polyols in locust eggs in response to cold acclimation. J Insect Physiol. 2010;56:966–970.
  • Saeidi F, Moharramipour S, Barzegar M. Seasonal patterns of cold hardiness and cryoprotectant profiles in Brevicoryne brassicae (Hemiptera: Aphididae). Environ Entomol. 2012;41:1638–1643.
  • Douglas AE. Phloem-sap feeding by animals: Problems and solutions. J Exp Bot. 2006;57:747–754.
  • Reyes-DelaTorre A, Peña-Rangel MT, Riesgo-Escovar JR. Carbohydrate metabolism in Drosophila: Reliance on the disaccharide trehalose. In: Chang, C-F (Ed). Carbohydrates – Comprehensive studies on glycobiology and glycotechnology. Rijeka: InTech; 2012. Ch 14:p. 317–338.
  • Moriwaki N, Matsushita K, Nishina M, et al. High concentrations of trehalose in aphid hemolymph. Appl Entomol Zool. 2003;38:241–248.
  • Shi J-F, Xu Q-Y, Sun Q-K, et al. Physiological roles of trehalose in Leptinotarsa larvae revealed by RNA interference of trehalose-6-phosphate synthase and trehalase genes. Insect Biochem Mol Biol. 2016;77:52–68.