1,486
Views
23
CrossRef citations to date
0
Altmetric
Research Paper

Contribution of ATPase copper transporters in animal but not plant virulence of the crossover pathogen Aspergillus flavus

, , , , , , & show all
Pages 1273-1286 | Received 17 Jan 2018, Accepted 28 Jun 2018, Published online: 23 Aug 2018

References

  • Festa RA, Thiele DJ. Copper at the front line of the host-pathogen battle. PLoS Pathog. 2012 Sep;8(9):e1002887.
  • Ding C, Festa Ra, Sun Ts, et al. Iron and copper as virulence modulators in human fungal pathogens. Mol Microbiol. 2014 Jul;93(1):10–23.
  • Vulpe CD, Packman S. Cellular copper transport. Annu Rev Nutr. 1995;15:293–322.
  • Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011 May 10;283(2–3):65–87.
  • Benov L. How superoxide radical damages the cell. Protoplasma. 2001;217(1–3):33–36.
  • Macomber L, Imlay JA. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. PNAS. 2009 May 19;106(20):8344–8349.
  • Ding C, Festa Ra, Chen Yl, et al. Cryptococcus neoformans copper detoxification machinery is critical for fungal virulence. Cell Host Microbe. 2013 Mar 13;13(3):265–276.
  • Samanovic Mi, Ding C, Thiele Dj, et al. Copper in microbial pathogenesis: meddling with the metal. Cell Host Microbe. 2012 Feb 16;11(2):106–115.
  • Bergemann C, Zaatreh S, Wegner K, et al. Copper as an alternative antimicrobial coating for implants - An in vitro study. World J Transplant. 2017 Jun 24;7(3):193–202.
  • Weaver L, Michels HT, Keevil CW. Potential for preventing spread of fungi in air-conditioning systems constructed using copper instead of aluminium. Lett Appl Microbiol. 2010 Jan;50(1):18–23.
  • Munoz C, Rios E, Olivos J, et al. Iron, copper and immunocompetence. Br J Nutr. 2007 Oct;98(Suppl 1):S24–S28.
  • Besold AN, Culbertson EM, Culotta VC, et al. Yang of copper during infection. J Biol Inorg Chem. 2016 Apr;21(2):137–144.
  • White C, Lee J, Kambe T, et al. A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J Biol Chem. 2009 Dec 04;284(49):33949–33956.
  • Palmgren MG, Nissen P. P-type ATPases. Annu Rev Biophys. 2011;40:243–266.
  • Wiemann P, Perevitsky A, Lim FY, et al. Aspergillus fumigatus copper export machinery and reactive oxygen intermediate defense counter host copper-mediated oxidative antimicrobial offense. Cell Rep. 2017 May 02;19(5):1008–1021.
  • Jungmann J, Reins HA, Lee J, et al. MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast. EMBO J. 1993 Dec 15;12(13):5051–5056.
  • Cyert MS, Philpott CC. Regulation of cation balance in Saccharomyces cerevisiae. Genetics. 2013 Mar;193(3):677–713.
  • Waterman SR, Hacham M, Hu G, et al. Role of a CUF1/CTR4 copper regulatory axis in the virulence of Cryptococcus neoformans. J Clin Invest. 2007 Mar;117(3):794–802.
  • Weissman Z, Berdicevsky I, Cavari BZ, et al. The high copper tolerance of Candida albicans is mediated by a P-type ATPase. PNAS. 2000 Mar 28;97(7):3520–3525.
  • Schwartz JA, Olarte KT, Michalek JL, et al. Regulation of copper toxicity by Candida albicans GPA2. Eukaryot Cell. 2013 Jul;12(7):954–961.
  • Mackie J, Szabo EK, Urgast DS, et al. Host-imposed copper poisoning impacts fungal micronutrient acquisition during systemic Candida albicans infections. PloS One. 2016;11(6):e0158683.
  • Antsotegi-Uskola M, Markina-Inarrairaegui A, Ugalde U. Copper resistance in Aspergillus nidulans relies on the PI-type ATPase CrpA, regulated by the transcription factor AceA. Front Microbiol. 2017;8:912.
  • Park YS, Lian H, Chang M, et al. Identification of high-affinity copper transporters in Aspergillus fumigatus. Fungal Genet Biol. 2014;73:29–38.
  • Saitoh Y, Izumitsu K, Morita A, et al. A copper-transporting ATPase BcCCC2 is necessary for pathogenicity of Botrytis cinerea. Mol Genet Genomics. 2010 Jul;284(1):33–43.
  • Upadhyay S, Torres G, Lin X. Laccases involved in 1,8-dihydroxynaphthalene melanin biosynthesis in Aspergillus fumigatus are regulated by developmental factors and copper homeostasis. Eukaryot Cell. 2013;Dec;12(12):1641–1652.
  • Hedayati MT, Pasqualotto AC, Warn PA, et al. Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology. 2007 Jun;153(Pt(6)):1677–1692.
  • Chakrabarti A, Singh R. The emerging epidemiology of mould infections in developing countries. Curr Opin Infect Dis. 2011 Dec;24(6):521–526.
  • Amare MG, Keller NP. Molecular mechanisms of Aspergillus flavus secondary metabolism and development. Fungal Genet Biol. 2014 May;66:11–18.
  • Meite F, Alvarez-Zaldivar P, Crochet A, et al. Impact of rainfall patterns and frequency on the export of pesticides and heavy-metals from agricultural soils. Sci Total Environ. 2017 Nov 8;616–617:500–509.
  • Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410.
  • Katoh K, Misawa K, Kuma K, et al. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002 Jul 15;30(14):3059–3066.
  • Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009 Jul;26(7):1641–1650.
  • Shiraishi E, Inouhe M, Joho M, et al. The cadmium-resistant gene, CAD2, which is a mutated putative copper-transporter gene (PCA1), controls the intracellular cadmium-level in the yeast S. cerevisiae. Curr Genet. 2000 Feb;37(2):79–86.
  • Huffman DL, O’Halloran TV. Energetics of copper trafficking between the Atx1 metallochaperone and the intracellular copper transporter, Ccc2. J Biol Chem. 2000 Jun 23;275(25):18611–18614.
  • Wu F, Groopman JD, Pestka JJ. Public health impacts of foodborne mycotoxins. Annu Rev Food Sci Technol. 2014;5:351–372.
  • Pettit RE, Taber RA, Schroeder HW, et al. Influence of fungicides and irrigation practice on aflatoxin in peanuts before digging. Appl Microbiol. 1971 Oct;22(4):629–634.
  • Gauthier GM, Keller NP. Crossover fungal pathogens: the biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans. Fungal Genet Biol. 2013 Dec;61:146–157.
  • Lalitha P, Sun CQ, Prajna NV, et al. In vitro susceptibility of filamentous fungal isolates from a corneal ulcer clinical trial. Am J Ophthalmol. 2014 Feb;157(2):318–326.
  • Rudramurthy SM, Seyedmousavi S, Dhaliwal M, et al. Pharmacodynamics of voriconazole against wild-type and azole-resistant Aspergillus flavus isolates in a nonneutropenic murine model of disseminated aspergillosis. Antimicrob Agents Chemother. 2017 Jan; 61(1):e01491-16.
  • Jung WH, Kronstad JW. Iron and fungal pathogenesis: a case study with Cryptococcus neoformans. Cell Microbiol. 2008 Feb;10(2):277–284.
  • Perez N, Johnson R, Sen B, et al. Two parallel pathways for ferric and ferrous iron acquisition support growth and virulence of the intracellular pathogen Francisella tularensis Schu S4. Microbiol Open. 2016 Jun;5(3):453–468.
  • Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12(10):1161–1208.
  • Park JI, Grant CM, Dawes IW. The high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae is the major determinant of cAMP levels in stationary phase: involvement of different branches of the ras-cyclic AMP pathway in stress responses. Biochem Biophys Res Commun. 2005 Feb 4;327(1):311–319.
  • Logeman BL, Wood LK, Lee J, et al. Gene duplication and neo-functionalization in the evolutionary and functional divergence of the metazoan copper transporters Ctr1 and Ctr2. J Biol Chem. 2017 Jul 7;292(27):11531–11546.
  • Lenassi M, Gostincar C, Jackman S, et al. Whole genome duplication and enrichment of metal cation transporters revealed by de novo genome sequencing of extremely halotolerant black yeast Hortaea werneckii. PloS One. 2013;8(8):e71328.
  • Palacios O, Atrian S, Capdevila M. Zn- and Cu-thioneins: a functional classification for metallothioneins? J Biol Inorg Chem. 2011 Oct;16(7):991–1009.
  • Lanternier F, Cypowyj S, Picard C, et al. Primary immunodeficiencies underlying fungal infections. Curr Opin Pediatr. 2013 Dec;25(6):736–747.
  • Parisot D, Dufresne M, Veneault C, et al. clap1, a gene encoding a copper-transporting ATPase involved in the process of infection by the phytopathogenic fungus Colletotrichum lindemuthianum. Mol Genet Genomics. 2002 Oct;268(2):139–151.
  • Hodgkinson V, Petris MJ. Copper homeostasis at the host-pathogen interface. J Biol Chem. 2012 Apr 20;287(17):13549–13555.
  • Shimizu K, Keller NP. Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics. 2001 Feb;157(2):591–600.
  • Yang K, Liang L, Ran F, et al. The DmtA methyltransferase contributes to Aspergillus flavus conidiation, sclerotial production, aflatoxin biosynthesis and virulence. Sci Rep. 2016;6:23259.
  • Lim FY, Sanchez JF, Wang CC, et al. Toward awakening cryptic secondary metabolite gene clusters in filamentous fungi. Methods Enzymol. 2012;517:303–324.
  • Christensen S, Borrego E, Shim WB, et al. Quantification of fungal colonization, sporogenesis, and production of mycotoxins using kernel bioassays. J Visualized Exp. 2012;23:62.
  • Luo X, Affeldt KJ, Keller NP. Characterization of the Far Transcription Factor Family in Aspergillus flavus. G3 (Bethesda, Md).. 2016 Aug 17;6(10):3269–3281.
  • Green MR, Sambrook J. Molecular cloning: a laboratory manual. New York: Cold Spring Harbour Laboratory Press; 2012.
  • Figueroa JAL, Stiner CA, Radzyukevich TL, et al. Metal ion transport quantified by ICP-MS in intact cells. Sci Rep. 2016 Feb;03(6):20551.
  • Khalid S, Baccile JA, Spraker JE, et al. NRPS-derived isoquinolines and lipopetides mediate antagonism between plant pathogenic fungi and bacteria. ACS Chem Biol. 2018 Jan 19;13(1):171–179.
  • Pfannenstiel BT, Zhao X, Wortman J, et al. Revitalization of a forward genetic screen identifies three new regulators of fungal secondary metabolism in the genus Aspergillus. mBio. 2017 Sep 5; 8(5).