4,040
Views
31
CrossRef citations to date
0
Altmetric
Review

Identification of Plasmodiophora brassicae effectors — A challenging goal

, , , , , & ORCID Icon show all
Pages 1344-1353 | Received 01 May 2018, Accepted 18 Jul 2018, Published online: 26 Aug 2018

References

  • Hwang SF, Strelkov SE, Feng J, et al. Plasmodiophora brassicae: a review of an emerging pathogen of the Canadian canola (Brassica napus) crop. Mol Plant Pathol. 2012;13:105–113.
  • Strelkov SE, Hwang SF. Clubroot in the Canadian canola crop: 10 years into the outbreak. Can J Plant Pathol. 2014;36(S1):27–36.
  • Bhering AS, Do Carmo MGF, Matos TM, et al. Soil factors related to the severity of clubroot in Rio de Janeiro. Brazil Plant Disease. 2017;101:1345–1353.
  • Aist JR, Williams PH. The cytology and kinetics of cabbage root hair penetration by Plasmodiophora brassicae. Can J Bot. 1971;49:2023–2034.
  • Burki F, Kudryavtsev A, Matz MV, et al. Evolution of Rhizaria: new insights from phylogenomic analysis of uncultivated protists. BMC Evol Biol. 2010;10:377.
  • Burki F, Keeling PJ. Rhizaria. Curr Biol. 2014;24(3):R103–7.
  • Kageyama K, Asano T. Life cycle of Plasmodiophora brassicae. J Plant Growth Regul. 2009;28(3):203–211.
  • Peng G, Lahlali R, Hwang SF, et al. Crop rotation, cultivar resistance, and fungicides/biofungicides for managing clubroot (Plasmodiophora brassicae) on canola. Can J Plant Pathol. 2014;36(S1):99–112.
  • Rahman H, Bennett RA, Seguin-Swartz G. Broadening genetic diversity in Brassica napus canola: development of canola-quality spring B. napus from B. napus × B. oleracea var. alboglabra interspecific crosses. Can J Plant Sci. 2014;95(1):29–41.
  • Fredua-Agyeman R, Hwang S-F, Strelkov SE, et al. Assessment of resistance to ‘new’ virulent populations of Plasmodiophora brassicae reveals potential loss of clubroot resistance genes from donor parent Brassica rapa L. ssp. rapifera (ECD 04) during doubled haploid production. Mol Plant Pathol. 2017. DOI:10.1111/ppa.12816
  • Rahman H, Shakir A, Hassan MJ. Breeding for clubroot resistant spring canola (Brassica napus L.) for the Canadian prairies: can the European winter canola cv. ‘Mendel’ be used as a source of resistance? Can J Plant Sci. 2011;91:447–458.
  • Matsumoto E, Ueno H, Aruga D, et al. Accumulation of three clubroot resistance genes through marker-assisted selection in Chinese Cabbage (Brassica rapa ssp. pekinensis). J Jpn Soc Hortic Sci. 2012;81:184–190.
  • Diederichsen E, Frauen M, Ludwig-Müller J. Clubroot disease management challenges from a German perspective. Can J Plant Pathol. 2014;36:85–98.
  • Ueno H, Matsumoto E, Aruga D, et al. Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa. Plant Mol Biol. 2012;80:621–629.
  • Hatakeyama H, Suwabe K, Tomita RN, et al. Identification and characterization of Crr1a, a gene for resistance to clubroot disease (Plasmodiophora brassicae Woronin) In Brassica rapa L. PLoS ONE. 2013;8:e54745.
  • Figdore SS, Ferreira ME, Slocum MK, et al. Association of RFLP markers with trait loci affecting clubroot resistance and morphological characters in Brassica oleracea L. Euphytica. 1993;69:33–44.
  • Rocherieux J, Glory P, Giboulot A, et al. Isolate-specific and broad-spectrum QTLs are involved in the control of clubroot in Brassica oleracea. Theor Appl Genet. 2004;108:1555–1563.
  • Nagaoka T, Doullah MA, Matsumoto S, et al. Identification of QTLs that control clubroot resistance in Brassica oleracea and comparative analysis of clubroot resistance genes between B. rapa and B. oleracea. Theor Appl Genet. 2010;120:1335–1346.
  • Lee J, Izzah NK, Choi BS, et al. Genotyping-by-sequencing map permits identification of clubroot resistance QTLs and revision of the reference genome assembly in cabbage (Brassica oleracea L.). DNA Res. 2015;23:29–41.
  • Schwelm A, Fogelqvist J, Knaust A, et al. The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases. Sci Rep. 2015;5:11153.
  • Rolfe SA, Strelkov SE, Links MG, et al. The compact genome of the plant pathogen Plasmodiophora brassicae is adapted to intracellular interactions with host Brassica spp. BMC Genomics. 2016;17:272.
  • Vleeshouwers VGAA, Oliver RP. Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. Molecular Plant-Microbe Interactions. 2014;27(3):196–206.
  • Cano LM, Raffaele S, Haugen RH, et al. Major transcriptome reprogramming underlies floral mimicry induced by the rust fungus Puccinia monoica in Boechera stricta. PLoS One. 2013;8:e75293.
  • Sugio A, Kingdom HN, MacLean AM, et al. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. PNAS. 2011;108(48):E1254–E1263.
  • Nemri A, Saunders DGO, Anderson C, et al. The genome sequence and effector complement of the flax rust pathogen Melampsora lini. Front Plant Sci. 2014;5. DOI:10.3389/fpls.2014.00098.
  • Dodds PN, Lawrence GJ, Catanzariti A-M, et al. The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are Recognized inside plant cells. Plant Cell. 2004;16:755–768.
  • Van Esse HP, Bolton MD, Stergiopoulos I, et al. The chitin-binding Cladosporium fulvum effector protein Avr4 is a virulence factor. Molecular Plant-Microbe Interactions. 2007;20(9):1092–1101.
  • Salcedo A, Rutter W, Wang S, et al. Variation in the AvrSr35 gene determines Sr35 resistance against wheat stem rust race Ug99. Science. 2017;358:1604–1606.
  • Chen J, Upadhyaya NM, Ortiz D, et al. Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat. Science. 2017;358:1607–1610.
  • Mago R, Zhang P, Vautrin S, et al. The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat Plants. 2015;1:15186.
  • Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant– pathogen interactions. Nat Rev Genet. 2010;11(8):539–548.
  • Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444:323–329.
  • Siemens J, González MC, Wolf S, et al. Extracellular invertase is involved in the regulation of clubroot disease in Arabidopsis thaliana. Mol Plant Pathol. 2011;12:247–262.
  • Duplessis S, Cuomo CA, Lin Y-C, et al. Obligate biotrophy features unravelled by the genomic analysis of rust fungi. Proc Natl Acad Sci USA. 2011;108:9166–9171.
  • Hacquard S, Joly DL, Lin Y-C, et al. A comprehensive analysis of genes encoding small secreted proteins identifies candidate effectors in Melampsora larici-populina (poplar leaf rust). Molecular Plant Microbe Interactions. 2012;25:279–293.
  • Ludwig-Müller J, Jülken S, Geib K, et al. A novel methyltransferase from the intracellular pathogen Plasmodiophora brassicae methylates salicylic acid. Mol Plant Pathol. 2015;16(4):349–364.
  • Dempsey DA, Vlot AC, Wildermuth MC, et al. Salicylic acid biosynthesis and metabolism. In: Torii K, editor. The Arabidopsis Book. Vol. 9. Rockville, MD: The American Society of Plant Biologists; 2011. p. e0156.
  • Seskar M, Shulaev V, Raskin I. Endogenous methyl salicylate in pathogen-inoculated tobacco plants. Plant Physiol. 1998;116:387–392.
  • Djamei A, Schipper K, Rabe F, et al. Metabolic priming by a secreted fungal effector. Nature. 2011;478:395–398.
  • Lo Presti L, Lanver D, Schweizer G, et al. Fungal effectors and plant susceptibility. Annu Rev Plant Biol. 2015;66:513–545.
  • Stergiopoulos I, De Wit PJGM. Fungal effector proteins. Annu Rev Phytopathol. 2009;47:233–263.
  • De Carvalho M, Nascimento LC, Darben LM, et al. Prediction of the in planta Phakopsora pachyrhizi secretome and potential effector families. Mol Plant Pathol. 2017;18(3):363–377.
  • Rafiqi M, Gan PHP, Ravensdale M, et al. Internalization of flax rust avirulence proteins into flax and tobacco cells can occur in the absence of the pathogen. Plant Cell. 2010;22:2017–2032.
  • Yaeno T, Li H, Chaparro-Garcia A, et al. Phosphatidyl inositol monophosphate-binding interface in the oomycete RXLR effector AVR3a is required for its stability in host cells to modulate plant immunity. Proc Natl Acad Sci USA. 2011;108:14682–14687.
  • Kale SD, Gu B, Capelluto DG, et al. External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell. 2010;142:284–295.
  • Xiang J, Li X, Yin L, et al. A candidate RxLR effector from Plasmopara viticola can elicit immune responses in Nicotiana benthamiana. BMC Plant Biology. 2017;17:75.
  • Wirthmueller L, Maqbool A, Banfield MJ. On the front line: structural insights into plant-pathogen interactions. Nat Rev Microbiol. 2013;11:761–776.
  • Van Den Burg HA, Spronk CAEM, Boeren S, et al. Binding of the AVR4 elicitor of Cladosporium fulvum to chitotriose units is facilitated by positive allosteric protein- protein interactions: the chitin-binding site of Avr4 represents a novel binding site on the folding scaffold shared between the invertebrate and the plant chitin-binding domain. J Biol Chem. 2004;279:16786–16796.
  • Van Den Burg HA, Harrison SJ, Joosten MHAJ, et al. Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Molecular Plant-Microbe Interaction. 2006;19:1420–1430.
  • Bolton MD, Van Esse HP, Vossen JH, et al. The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. Mol Microbiol. 2008;69:119–136.
  • Spanu PD, Abbott JC, Amselem J, et al. Genome expansion and gene loss in powdery mildew fungi reveal trade offs in extreme parasitism. Science. 2010;330:1543–1546.
  • Rooney HCE, Van’t Klooster JW, Van Der Hoorn RAL, et al. Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science. 2005;308:1783–1786.
  • Pallaghy PK, Nielsen KJ, Craik DJ, et al. A common structural motif incorporating a cysteine knot and a triple-stranded Î2-sheet in toxic and inhibitory polypeptides. Protein Sci. 1994;3:1833–1839.
  • Van Den Hooven HW, Van Den Burg HA, Vossen P, et al. Disulfide bond structure of the AVR9 elicitor of the fungal tomato pathogen Cladosporium fulvum: evidence for a cystine knot. Biochemistry. 2001;40:3458–3466.
  • Bulman S, Siemens J, Ridgway HJ, et al. Identification of genes from the obligate intracellular plant pathogen, Plasmodiophora brassicae. FEMS Microbiol Lett. 2006;264:198–204.
  • Feng J, Hwang RU, Hwang S-F, et al. Molecular characterization of a serine protease Pro1 from Plasmodiophora brassicae that stimulates resting spore germination. Plant Pathology. 2010;11(4):503–512.
  • Moxham SE, Buczacki ST. Structure of the resting spore wall of Plasmodiophora brassicae revealed by electron microscopy and chemical digestion. Trans Br Mycological Soc. 1983;81:221–231.
  • Gurlebeck D, Thieme F, Bonas U. Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. J Plant Physiol. 2006;163:233–255.
  • Poueymiro M, Genin S. Secreted proteins from Ralstonia solanacearum: a hundred tricks to kill a plant. Curr Opin Microbiol. 2009;12:44–52.
  • Bai X, Correa VR, Toruño TY, et al. AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Molecular Plant Microbe Interaction. 2009;22:18–30.
  • Caillaud M-C, Piquerez SJM, Fabro G, et al. Subcellular localization of the Hpa RxLR effector repertoire identifies a tonoplast-associated protein HaRxL17 that confers enhanced plant susceptibility. Plant J. 2012;69:252–265.
  • Vargas WA, Sanz-Martín JM, Rech GE, et al. A fungal effector with host nuclear localization and DNA-binding properties is required for maize anthracnose development. Molecular Plant Microbe Interaction. 2016;29:83–95.
  • Quentin M, Abad P, Favery B. Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells. Front Plant Sci. 2013;4:53.
  • Espinosa A, Alfano JR. Disabling surveillance: bacterial type III secretion system effectors that suppress innate immunity. Cell Microbiol. 2004;6:1027–1040.
  • Marti M, Good RT, Rug M, et al. Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science. 2004;306:1930–1933.
  • Noon JB, Qi M, Sill1 DN, et al. A Plasmodium-like virulence effector of the soybean cyst nematode suppresses plant innate immunity. New Phytologist. 2016;212:444–460.
  • Schwelm A, Badstöber J, Bulman S, et al. Not in your usual Top 10: protists that infect plants and algae. Mol Plant Pathol. 2017. DOI:10.1111/mpp.12580
  • Legreve A, Vanpee B, Delfosse P, et al. Host range of tropical and sub-tropical isolates of Polymyxa graminis. Eur J Plant Pathol. 2000;106:379–389.
  • Legreve A, Delfosse P, Maraite H. Phylogenetic analysis of Polymyxa species based on nuclear 5.8S and internal transcribed spacers ribosomal DNA sequences. Mycology Res. 2002;106:138–147.
  • Bulman S, Candy JM, Fiers M, et al. Genomics of biotrophic, plant-infecting plasmodiophorids using in vitro dual cultures. Protist. 2011;162:449–461.
  • Gutiérrez PA, Alzate JF, Montoya MM. Analysis of carbohydrate metabolism genes of Spongospora subterranea using 454 pyrosequencing. Revista Facultad Nacional De Agronomía Medellín. 2014;67:7247–7260.
  • Gutiérrez P, Bulman S, Alzate JF, et al. Mitochondrial genome sequence of the potato powdery scab pathogen Spongospora subterranea. Mitochondrial DNA. Part A, DNA Mapping, Sequencing, and Analysis. 2016;27:58–59.
  • Bulman S, Braselton JP. Rhizaria: phytomyxea. In: (Mclaughlin DJ, Spatafora JW, editors. The Mycota VII, Part A, Systematics and Evolution. Berlin (Germany): Springer-Verlag; 2014. p. 99–112.
  • Malinowski R, Smith JA, Fleming AJ, et al. Gall formation in clubroot-infected Arabidopsis results from an increase in existing meristematic activities of the host but is not essential for the completion of the pathogen life cycle. Plant J. 2012;71:226–238.
  • Zuccaro A, Lahrmann U, GüLdener U, et al. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog. 2011;7:e1002290.
  • Ye W, Wang Y, Wang Y. Bioinformatics analysis reveals abundant short alpha-helices as a common structural feature of oomycete RxLR effector proteins. PLoSONE. 2015;10:e0135240.
  • Irani S, Trost B, Waldner M, et al. Transcriptome analysis of response to Plasmodiophora brassicae infection in the Arabidopsis shoot and root. BMC Genomics. 2018;19:23.
  • Seifbarghi S, Borhan MH, Wei Y, et al. Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus. BMC Genomics. 2017;18:266.
  • Bulman S, Richter F, Marschollek S, et al. Arabidopsis thaliana expressing PbBSMT, a gene encoding a SABATH-type methyltransferase from the plant pathogenic protist Plasmodiophora brassicae, show leaf chlorosis and altered host susceptibility. Plant Biol. 2018. DOI:10.1111/plb.12728
  • Bolger AM, Lohse M, Usadel B. Trimmomatic:A flexible trimmer for Illumina Sequence Data. Bioinformatics. 2014;30(15):2114–2120..
  • Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
  • Petersen TN, Brunak S, Von Heijne G, et al. SignalP4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–786.
  • Horton P, Park K-J, Obayashi T, et al. WoLF PSORT: protein localization predictor. Nucleic Acids Res. 2007;35:W585–W587.
  • Emanuelsson O, Nielsen H, Brunak S, et al. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000;300:1005–1016.