3,191
Views
14
CrossRef citations to date
0
Altmetric
Review

Staphylococcus aureus colonization and non-influenza respiratory viruses: Interactions and synergism mechanisms

, , , , , & ORCID Icon show all
Pages 1354-1363 | Received 12 May 2018, Accepted 23 Jul 2018, Published online: 26 Aug 2018

References

  • Bakaletz LO. Viral potentiation of bacterial superinfection of the respiratory tract. Trends Microbiol. 1995;3:110–114.
  • McBride TP, Doyle WJ, Hayden FG, et al. Alterations of the eustachian tube, middle ear, and nose in rhinovirus infection. Arch Otolaryngol Head Neck Surg. 1989;115:1054–1059.
  • Gwaltney JM. Acute community-acquired sinusitis. Clin Infect Dis. 1996;23:1209–1223.
  • Robinson J. Colonization and infection of the respiratory tract: what do we know? Paediatr Child Health. 2004;9:21–24.
  • McCullers JA. Insights into the interaction between influenza virus and Pneumococcus. Clin Microbiol Rev. 2006;19:571–582.
  • DeLeo FR, Musser JM. Axis of coinfection evil. J Infect Dis. 2010;201:488–490.
  • Metzger DW, Sun K. Immune dysfunction and bacterial coinfections following influenza. J Immunol. 2013;191:2047–2052.
  • Papanicolaou GA. Severe influenza and S.aureus pneumonia. Virulence. 2013;4:666–668.
  • Robinson KM, Kolls JK, Alcorn JF. The immunology of influenza virus-associated bacterial pneumonia. Curr Opin Immunol. 2015;34:59–67.
  • Rynda-Apple A, Robinson KM, Alcorn JF. Influenza and bacterial superinfection: illuminating the immunologic mechanisms of disease. Infect Immun. 2015;83:3764–3770.
  • Wertheim HF, Melles DC, Vos MC, et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis. 2005;5:751–762.
  • Verhoeven PO, Gagnaire J, Botelho-Nevers E, et al. Detection and clinical relevance of Staphylococcus aureus nasal carriage: an update. Expert Rev Anti Infect Ther. 2014;12:75–89.
  • Mertz D, Frei R, Periat N, et al. Exclusive Staphylococcus aureus throat carriage: at-risk populations. Arch Intern Med. 2009;169:172–178.
  • Verhoeven PO, Haddar CH, Grattard F, et al. Does pharyngeal sampling improve the detection of nasopharyngeal persistent carriers of Staphylococcus aureus? J Infect. 2015;70:549–552.
  • Bourgeois-Nicolaos N, Lucet J-C, Daubié C, et al. Maternal vaginal colonisation by Staphylococcus aureus and newborn acquisition at delivery. Paediatr Perinat Epidemiol. 2010;24:488–491.
  • Gagnaire J, Verhoeven PO, Grattard F, et al. Epidemiology and clinical relevance of Staphylococcus aureus intestinal carriage: a systematic review and meta-analysis. Expert Rev Anti Infect Ther. 2017;15:767–785.
  • Tong SYC, Davis JS, Eichenberger E, et al. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28:603–661.
  • Melzer M, Welch C. Thirty-day mortality in UK patients with community-onset and hospital-acquired meticillin-susceptible Staphylococcus aureus bacteraemia. J Hosp Infect. 2013;84:143–150.
  • Kern WV. Management of Staphylococcus aureus bacteremia and endocarditis: progresses and challenges. Curr Opin Infect Dis. 2010;23:346–358.
  • Josse J, Laurent F, Diot A. Staphylococcal adhesion and host cell invasion: fibronectin-binding and other mechanisms. Front Microbiol. 2017;8:2433.
  • Kahl BC, Goulian M, Van Wamel W, et al. Staphylococcus aureus RN6390 replicates and induces apoptosis in a pulmonary epithelial cell line. Infect Immun. 2000;68:5385–5392.
  • Ratner AJ, Bryan R, Weber A, et al. Cystic fibrosis pathogens activate Ca2+-dependent mitogen-activated protein kinase signaling pathways in airway epithelial cells. J Biol Chem. 2001;276:19267–19275.
  • Labandeira-Rey M, Couzon F, Boisset S, et al. Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science. 2007;315:1130–1133.
  • Bubeck Wardenburg J, Bae T, Otto M, et al. Poring over pores: alpha-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus pneumonia. Nat Med. 2007;13:1405–1406.
  • Randolph AG, Vaughn F, Sullivan R, et al. Critically ill children during the 2009–2010 influenza pandemic in the United States. Pediatrics. 2011;128:e1450–8.
  • Rice TW, Rubinson L, Uyeki TM, et al. Critical illness from 2009 pandemic influenza A (H1N1) virus and bacterial co-infection in the United States. Crit Care Med. 2012;40:1487–1498.
  • Reddinger RM, Luke-Marshall NR, Hakansson AP, et al. Host physiologic changes induced by influenza A virus lead to Staphylococcus aureus biofilm dispersion and transition from asymptomatic colonization to invasive disease. mBio. 2016;7:e01235–16.
  • Sherertz RJ, Reagan DR, Hampton KD, et al. A cloud adult: the Staphylococcus aureus-virus interaction revisited. Ann Intern Med. 1996;124:539–547.
  • Bischoff WE, Bassetti S, Bassetti-Wyss BA, et al. Airborne dispersal as a novel transmission route of coagulase-negative staphylococci: interaction between coagulase-negative staphylococci and rhinovirus infection. Infect Control Hosp Epidemiol. 2004;25:504–511.
  • Bassetti S, Bischoff WE, Walter M, et al. Dispersal of Staphylococcus aureus into the air associated with a rhinovirus infection. Infect Control Hosp Epidemiol. 2005;26:196–203.
  • Bischoff WE, Wallis ML, Tucker BK, et al. “Gesundheit!” sneezing, common colds, allergies, and Staphylococcus aureus dispersion. J Infect Dis. 2006;194:1119–1126.
  • Bischoff WE, Tucker BK, Wallis ML, et al. Preventing the airborne spread of Staphylococcus aureus by persons with the common cold: effect of surgical scrubs, gowns, and masks. Infect Control Hosp Epidemiol. 2007;28:1148–1154.
  • Merler S, Poletti P, Ajelli M, et al. Coinfection can trigger multiple pandemic waves. J Theor Biol. 2008;254:499–507.
  • Hofstra JJ, Matamoros S, Van De Pol MA, et al. Changes in microbiota during experimental human rhinovirus infection. BMC Infect Dis. 2015;15:336.
  • Thorburn K. High incidence of pulmonary bacterial co-infection in children with severe respiratory syncytial virus (RSV) bronchiolitis. Thorax. 2006;61:611–615.
  • Suárez-Arrabal MC, Mella C, Lopez SM, et al. Nasopharyngeal bacterial burden and antibiotics: influence on inflammatory markers and disease severity in infants with respiratory syncytial virus bronchiolitis. J Infect. 2015;71:458–469.
  • Jiang W, Wang T, Li L, et al. Impact of bacteria in nasal aspirates on disease severity of bronchiolitis. Infect Dis. 2016;48:82–86.
  • Rosas-Salazar C, Shilts MH, Tovchigrechko A, et al. Differences in the nasopharyngeal microbiome during acute respiratory tract infection with human rhinovirus and respiratory syncytial virus in infancy. J Infect Dis. 2016;214:1924–1928.
  • De Steenhuijsen Piters WAA, Heinonen S, Hasrat R, et al. Nasopharyngeal microbiota, host transcriptome, and disease severity in children with respiratory syncytial virus infection. Am J Respir Crit Care Med. 2016;194:1104–1115.
  • Fukutani KF, Nascimento-Carvalho CM, Van Der Gucht W, et al. Pathogen transcriptional profile in nasopharyngeal aspirates of children with acute respiratory tract infection. J Clin Virol. 2015;69:190–196.
  • Stensballe LG, Hjuler T, Andersen A, et al. Hospitalization for respiratory syncytial virus infection and invasive pneumococcal disease in Danish children aged <2 years: a population-based cohort study. Clin Infect Dis. 2008;46:1165–1171.
  • Weinberger DM, Klugman KP, Steiner CA, et al. Association between respiratory syncytial virus activity and pneumococcal disease in infants: a time series analysis of US hospitalization data. PLoS Med. 2015;12:e1001776.
  • Metersky ML, Masterton RG, Lode H, et al. Epidemiology, microbiology, and treatment considerations for bacterial pneumonia complicating influenza. Int J Infect Dis. 2012;16:e321–31.
  • Passariello C, Nencioni L, Sgarbanti R, et al. Viral hemagglutinin is involved in promoting the internalisation of Staphylococcus aureus into human pneumocytes during influenza A H1N1 virus infection. Int J Med Microbiol. 2011;301:97–104.
  • Scheiblauer H, Reinacher M, Tashiro M, et al. Interactions between bacteria and influenza A virus in the development of influenza pneumonia. J Infect Dis. 1992;166:783–791.
  • Warnking K, Klemm C, Löffler B, et al. Super-infection with Staphylococcus aureus inhibits influenza virus-induced type I IFN signalling through impaired STAT1-STAT2 dimerization. Cell Microbiol. 2015;17:303–317.
  • Mäkelä MJ, Puhakka T, Ruuskanen O, et al. Viruses and bacteria in the etiology of the common cold. J Clin Microbiol. 1998;36:539–542.
  • Gavala ML, Bertics PJ, Gern JE. Rhinoviruses, allergic inflammation, and asthma: rhinovirus infections, allergy, and asthma. Immunol Rev. 2011;242:69–90.
  • Triantafilou K, Vakakis E, Richer EAJ, et al. Human rhinovirus recognition in non-immune cells is mediated by Toll -like receptors and MDA-5, which trigger a synergetic pro-inflammatory immune response. Virulence. 2011;2:22–29.
  • Slater L, Bartlett NW, Haas JJ, et al. Co-ordinated role of TLR3, RIG-I and MDA5 in the innate response to rhinovirus in bronchial epithelium. PLoS Pathog. 2010;6:e1001178.
  • Selinger DS, Reed WP, McLaren LC. Model for studying bacterial adherence to epithelial cells infected with viruses. Infect Immun. 1981;32:941–944.
  • Passariello C, Schippa S, Conti C, et al. Rhinoviruses promote internalisation of Staphylococcus aureus into non-fully permissive cultured pneumocytes. Microbes Infect Inst Pasteur. 2006;8:758–766.
  • Wang JH, Kwon H-J, Lee B-J, et al. Staphylococcal enterotoxins A and B enhance rhinovirus replication in A549 cells. Am J Rhinol. 2007;21:670–674.
  • Wang JH, Kwon HJ, Jang YJ. Rhinovirus enhances various bacterial adhesions to nasal epithelial cells simultaneously. Laryngoscope. 2009;119:1406–1411.
  • Wang JH, Lee SH, Kwon HJ, et al. Clarithromycin inhibits rhinovirus-induced bacterial adhesions to nasal epithelial cells. Laryngoscope. 2010;120:193–199.
  • Min J-Y, Shin S-H, Kwon HJ, et al. Levocetirizine inhibits rhinovirus-induced bacterial adhesion to nasal epithelial cells through down-regulation of cell adhesion molecules. Ann Allergy Asthma Immunol. 2012;108:44–48.
  • Hauck CR, Ohlsen K. Sticky connections: extracellular matrix protein recognition and integrin-mediated cellular invasion by Staphylococcus aureus. Curr Opin Microbiol. 2006;9:5–11.
  • Schwarz-Linek U, Werner JM, Pickford AR, et al. Pathogenic bacteria attach to human fibronectin through a tandem beta-zipper. Nature. 2003;423:177–181.
  • Sinha B, François PP, Nüs Se O, et al. Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin α5β1. Cell Microbiol. 1999;1:101–117.
  • Van Kempen M, Bachert C, Van Cauwenberge P. An update on the pathophysiology of rhinovirus upper respiratory tract infections. Rhinology. 1999;37:97–103.
  • Jang YJ, Wang JH, Kim JS, et al. Levocetirizine inhibits rhinovirus-induced ICAM-1 and cytokine expression and viral replication in airway epithelial cells. Antiviral Res. 2009;81:226–233.
  • Papi A, Johnston SL. Rhinovirus infection induces expression of its own receptor intercellular adhesion molecule 1 (ICAM-1) via increased NF-κB-mediated transcription. J Biol Chem. 1999;274:9707–9720.
  • Kim J, Sanders SP, Siekierski ES, et al. Role of NF-kappa B in cytokine production induced from human airway epithelial cells by rhinovirus infection. J Immunol. 2000;165:3384–3392.
  • Chavakis T, Hussain M, Kanse SM, et al. Staphylococcus aureus extracellular adherence protein serves as anti-inflammatory factor by inhibiting the recruitment of host leukocytes. Nat Med. 2002;8:687–693.
  • Palma M, Haggar A, Flock JI. Adherence of Staphylococcus aureus is enhanced by an endogenous secreted protein with broad binding activity. J Bacteriol. 1999;181:2840–2845.
  • Hussain M, Haggar A, Heilmann C, et al. Insertional inactivation of Eap in Staphylococcus aureus strain Newman confers reduced staphylococcal binding to fibroblasts. Infect Immun. 2002;70:2933–2940.
  • Haggar A, Hussain M, Lonnies H, et al. Extracellular adherence protein from Staphylococcus aureus enhances internalization into eukaryotic cells. Infect Immun. 2003;71:2310–2317.
  • Bur S, Preissner KT, Herrmann M, et al. The Staphylococcus aureus extracellular adherence protein promotes bacterial internalization by keratinocytes independent of fibronectin-binding proteins. J Invest Dermatol. 2013;133:2004–2012.
  • Lee LY, Miyamoto YJ, McIntyre BW, et al. The Staphylococcus aureus Map protein is an immunomodulator that interferes with T cell–mediated responses. J Clin Invest. 2002;110:1461–1471.
  • Harraghy N. The adhesive and immunomodulating properties of the multifunctional Staphylococcus aureus protein Eap. Microbiology. 2003;149:2701–2707.
  • Chavakis T, Wiechmann K, Preissner KT, et al. Staphylococcus aureus interactions with the endothelium: the role of bacterial “secretable expanded repertoire adhesive molecules” (SERAM) in disturbing host defense systems. Thromb Haemost. 2005;94:278–285.
  • Athanasopoulos AN, Economopoulou M, Orlova VV, et al. The extracellular adherence protein (Eap) of Staphylococcus aureus inhibits wound healing by interfering with host defense and repair mechanisms. Blood. 2006;107:2720–2727.
  • Vercellotti GM, McCarthy JB, Lindholm P, et al. Extracellular matrix proteins (fibronectin, laminin, and type IV collagen) bind and aggregate bacteria. Am J Pathol. 1985;120:13–21.
  • Bodén MK, Flock JI. Evidence for three different fibrinogen-binding proteins with unique properties from Staphylococcus aureus strain Newman. Microb Pathog. 1992;12:289–298.
  • McGavin MH, Krajewska-Pietrasik D, Rydén C, et al. Identification of a Staphylococcus aureus extracellular matrix-binding protein with broad specificity. Infect Immun. 1993;61:2479–2485.
  • Kojima T, Go M, Takano K, et al. Regulation of tight junctions in upper airway epithelium. Biomed Res Int. 2013;2013:947072.
  • Schneeberger EE, Lynch RD. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol. 2004;286:C1213–28.
  • Comstock AT, Ganesan S, Chattoraj A, et al. Rhinovirus-induced barrier dysfunction in polarized airway epithelial cells is mediated by NADPH oxidase 1. J Virol. 2011;85:6795–6808.
  • Biagioli MC, Kaul P, Singh I, et al. The role of oxidative stress in rhinovirus induced elaboration of IL-8 by respiratory epithelial cells. Free Radic Biol Med. 1999;26:454–462.
  • Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.
  • Sajjan U, Wang Q, Zhao Y, et al. Rhinovirus disrupts the barrier function of polarized airway epithelial cells. Am J Respir Crit Care Med. 2008;178:1271–1281.
  • Otto M. Staphylococcus aureus toxins. Curr Opin Microbiol. 2014;17:32–37.
  • Morishita Y, Tada J, Sato A, et al. Possible influences of Staphylococcus aureus on atopic dermatitis– the colonizing features and the effects of staphylococcal enterotoxins. Clin Exp Allergy J. 1999;29:1110–1117.
  • Krakauer T. Stimulant-dependent modulation of cytokines and chemokines by airway epithelial cells: cross talk between pulmonary epithelial and peripheral blood mononuclear cells. Clin Diagn Lab Immunol. 2002;9:126–131.
  • Damm M, Quante G, Rosenbohm J, et al. Proinflammatory effects of Staphylococcus aureus exotoxin B on nasal epithelial cells. Otolaryngol-Head Neck Surg. 2006;134:245–249.
  • Stein RT, Bont LJ, Zar H, et al. Respiratory syncytial virus hospitalization and mortality: systematic review and meta-analysis: incidence of RSV hospitalization and mortality. Pediatr Pulmonol. 2017;52:556–569.
  • Paton AW, Goldwater PN. Respiratory syncytial virus modulation of adult and neonatal lymphocyte mitogenic responses and the role of interferon-gamma. Microb Pathog. 1990;9:235–241.
  • Blackwell CC, Saadi AT, Raza MW, et al. Susceptibility to infection in relation to SIDS. J Clin Pathol. 1992;45:20–24.
  • Saadi AT, Blackwell CC, Raza MW, et al. Factors enhancing adherence of toxigenic Staphylococcus aureus to epithelial cells and their possible role in sudden infant death syndrome. Epidemiol Infect. 1993;110:507–517.
  • Stark JM, Stark MA, Colasurdo GN, et al. Decreased bacterial clearance from the lungs of mice following primary respiratory syncytial virus infection. J Med Virol. 2006;78:829–838.
  • Raza MW, Blackwell CC, Molyneaux P, et al. Association between secretor status and respiratory viral illness. Br Med J. 1991;303:815–818.
  • Highet AR. An infectious aetiology of sudden infant death syndrome. J Appl Microbiol. 2008;105:625–635.
  • Kim TH, Lee HK. Innate immune recognition of respiratory syncytial virus infection. BMB Rep. 2014;47:184–191.
  • Lambert L, Sagfors AM, Openshaw PJM, et al. Immunity to RSV in early-life. Front Immunol. 2014;5:466.
  • Avadhanula V, Rodriguez CA, DeVincenzo JP, et al. Respiratory viruses augment the adhesion of bacterial pathogens to respiratory epithelium in a viral species- and cell type-dependent manner. J Virol. 2006;80:1629–1636.
  • Toth TE, Gates C. Lack of virus-specific bacterial adherence to bovine embryonic lung cells infected with bovine parainfluenza virus type 3. J Clin Microbiol. 1983;17:561–563.
  • Verkaik NJ, Nguyen DT, De Vogel CP, et al. Streptococcus pneumoniae exposure is associated with human metapneumovirus seroconversion and increased susceptibility to in vitro HMPV infection. Clin Microbiol Infect. 2011;17:1840–1844.
  • Atanasova K, Van Gucht S, Barbé F, et al. Lipoteichoic acid from Staphylococcus aureus exacerbates respiratory disease in porcine respiratory coronavirus-infected pigs. Vet J. 2011;188:210–215.
  • Li F, Zhu H, Sun R, et al. Natural killer cells are involved in acute lung immune injury caused by respiratory syncytial virus infection. J Virol. 2012;86:2251–2258.