6,702
Views
0
CrossRef citations to date
0
Altmetric
Special Focus on Endemic Mycoses

Coccidioides immitis and posadasii; A review of their biology, genomics, pathogenesis, and host immunity

&
Pages 1426-1435 | Received 13 Apr 2018, Accepted 31 Jul 2018, Published online: 04 Sep 2018

References

  • Hirschmann JV. The early history of coccidioidomycosis: 1892–1945. Clin Infect Dis. 2007;44(9):1202–1207.
  • Sharpton TJ, Rounsley SD, Gardner MJ, et al. Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res. 2009;19(10):1722–1731.
  • Whiston E, Jw T. Comparative phylogenomics of pathogenic and nonpathogenic species. G3(Bethesda). 2016;6(2):235–244.
  • Fisher MC, Koenig G, White TJ, et al. A test for concordance between the multilocus genealogies of genes and microsatellites in the pathogenic fungus Coccidioides immitis. Mol Biol Evol. 2000;17(8):1164–1174.
  • Fisher MC, Rannala B, Chaturvedi V, et al. Disease surveillance in recombining pathogens: multilocus genotypes identify sources of human Coccidioides infections. Proc Natl Acad Sci U S A. 2002;99(13):9067–9071.
  • Teixeria MM, Barker BM. Use of population genetics to assess the ecology, evolution, and population structure of Coccidioides. Emerg Inf Dis. 2016;22(6):1022–1030.
  • Del Rocio-Reyes-Montes M, Perez-Huitron MA, Ocana-Monroy JL, et al. The habitat of Coccidioides spp and the role of animals as reservoirs in disseminators to nature. BMC Infect Dis. 2016;16(1):550–558.
  • Engelthaler DM, Roe CC, Hepp CM, et al. Local population structure and patterns of western hemisphere dispersal for Coccidioides spp., the fungal cause of valley fever. mBio. 2016;7(2):e00550–16.
  • Lauer A, Talamantes J, Olivares LRC, et al. Combining forces - the use of landsat TM satellite imagery, soil parameter information, and multiplex PCR to Detect Coccidioides immitis growth sites in Kern County, California. PLoS One. 2014;9(11):e111921.
  • Brown J, Benedict K, Park BJ, et al. Coccidioidomycosis: epidemiology. Clin Epidemiol. 2013;5:185–197.
  • Taylor JW, Barker BM. The endozoan, small mammal-reservoir hypothesis and the life cycle Coccidioides species. Med Mycol. 2018:1–5.
  • Vargas-Gastelum L, Romero-Olivares AL, Escalante AE, et al. Impact of seasonal changes on fungal diversity of a semi-arid ecosystem revealed by 454 pyrosequencing. FEMS Microbiol Ecol. 2015;91:fiv044.
  • Lacy GH, Swatek EE. Soil ecology of Coccidioides immitis at Amerindian middens in California. Appl Microbiol. 1974;27:379–388.
  • Greene DR. Soil isolation and molecular identification of Coccidioides immitis. Mycologia. 2000;92:406–410.
  • Barker BM, Tabor JA, Shubitz LF, et al. Detection and phylogenetic analysis of Coccidioides posadasii in Arizona soil samples. Fungal Ecol. 2012;5(2):163–176.
  • Bowers JR, Parise KL, Kelley EJ, et al. Direct detection of Coccidioides from Arizona soils using CocciENV, a highly sensitive and specific real-time PCR assay. Med Mycol. 2018;56.
  • Chow NA, Griffin DW, Barker BM, et al. Molecular detection of airborne Coccidioides in Tuscon, Arizona. Med Mycol. 2016;54(6):584–592.
  • Nguyen C, Barker BM, Hoover S, et al. Recent advances in our uderstanding of the environmental, epidemiological, immunological, and clinical dimnsions of coccidioidomycosis. Clin Microbiol Rev 2013;26(3):505–525.
  • Guevara RE, Motala T, Terashita D. The changing epidemiology of coccidioidomycosis in Los Angeles (LA) County, California, 1973–2011. PLoS One. 2015;10(8):e0136753.
  • Schneider E, Hajjeh R, Jibson R, et al. A coccidioidomycosis outbreak following the Northridge, California earthquake. JAMA. 1997;277(11):904–908.
  • Flynn NM, Hoeprich PD, Kawachi MM, et al. An unusual outbreak of windborne coccidioidomycosis. N Engl J Med. 1979;301(7):358–362.
  • Elconin AF, Egeberg RO, Egeberg MC. Significance of soil salinity in the ecology of Coccidioides immitis. J Bacteriol. 1964;87(3):500–503.
  • Park BJ, Sigel K, Vaz V, et al. An epidemic of coccidioidomycosis in Arizona associated with climatic changes, 1998-2001. J Infect Dis. 2005;191(11):1981–1987.
  • Cooksey GS, Nguyen A, Knutson K, et al. Notes from the Field: increase in coccidioidomycosis — California, 2016. MMWR Morb Mortal Wkly Report. 2017;66(31):833.
  • Wheeler C, Lucas KD, Mohle-Boetani JC. Rates and risk factors for Coccidioidomycosis among prison inmates, California, USA, 2011. Emerg Infect Dis. 2015;21(1):70–75.
  • Litvintseva AP, Marsden-Haug N, Hurst S, et al. Valley fever: finding new places for an old disease: Coccidioides immitis found in Washington State soil associated with recent human infection. Clin Inf Dis. 2015;30(1):e1–3.
  • Kirkland TN, Fierer J. Coccidioidomycosis: a reemerging infectious disease. Emerg Infect Dis. 1996;2(3):192–199.
  • Crum NF, Lederman ER, Stafford CM, et al. Coccidioidomycosis: a descriptive survey of a reemerging disease. Clinical characteristics and current controversies. Medicine. 2004;83:149–175.
  • Valdivia L, Nix D, Wright M, et al. Coccidioidomycosis as a common cause of community-acquired pneumonia. Emerg Infect Dis. 2006;12(6):958–962.
  • Pappagianis D. Epidemiology of coccidioidomycosis. Curr Top Med Mycol. 1988;2:199–238.
  • Sondermeyer G, Lee L, Gilliss D, et al. Coccidioidomycosis-associated hospitalizations, California, USA, 2000-2011. Emerg Infect Dis. 2013;19(10):1590–1597.
  • Smith CE, Beard RR. Varieties of coccidioidal infection in relation to the epidemiology and control of the diseases. Am J Public Health Nations Health. 1946;36(12):1394–1402.
  • Mease L. Pulmonary and extrapulmonary coccidioidomycosis, active component, U.S. Armed Forces, 1999-2011. MSMR. 2012;9(12):2–4.
  • Jewell K, Cheshier R, Cage GD. Genetic diversity among clinical Coccidioides spp. isolates in Arizona. Med Mycol. 2008;46(5):449–455.
  • Neafsey DE, Barker BM, Sharpton TJ, et al. Population genomic sequencing of Coccidioides fungi reveals recent hybridization and transposon control. Genome Res. 2010;20(7):938–946.
  • Pan S, Cole GT. Electrophoretic karyotypes of clinical isolates of Coccidioides immitis. Infect Immun. 1992;60(11):4872–4880.
  • Kirkland TN, Muszewska A, Stajich JE. Analysis of transposable elements in Coccidioides species. J Fungi. 2018;4(1):13.
  • Converse JL. Effect of physico-chemical environment of spherulation of Coccidioides immitis in a chemically defined medium. J Bacteriol. 1956;72(6):784–792.
  • Galgiani JN, Payne CM. Leukocyte effects on the dimorphism of Coccidioides immitis. J Infect Dis. 1982;146(1):56–63.
  • Munoz-Hernande B, Palma-Cortes G, Cabello-Gutierrez C, et al. Parasitic polymorphism of Coccidioides spp. BMC Infect Dis. 2014;14(213):1–9.
  • Whiston E, Zhang Wise H, Sharpton TJ, et al. Comparative transcriptomics of the saprobic and parasitic growth phases in Coccidioides spp. PLoS One. 2012;7(7):e41034.
  • Viriyakosol S, Singhania A, Fierer J, et al. Gene expression in human fungal pathogen Coccidioides immitis changes as arthroconidia differentiate into spherules and mature. BMC Microbiol. 2013;13(1):121.
  • Schmaler-Ripcke J, Sugareva V, Gebhardt P, et al. Production of pyomelanin, a second type of melanin, via the tyrosine degradation pathway in Aspergillus fumigatus. Appl Environ Microbiol. 2009;75(2):493–503.
  • Sil A, Andrianopoulos A. Thermally dimorphic human fungal pathogens-polypheletic pathogens with a convergent pathogenicity trait. Cold Springs Harb Perspect Med. 2014;58:e019794.
  • Boyce KJ, McLauchlan A, Schreider L, et al. Intracellular growth is dependent on tyrosine catabolism in the dimorphic fungal pathogen Penicillium marneffei. PLoS Pathog. 2015;11(3):e1004790.
  • Kirkland TN. A few shared up-regulated genes may influence conidia to yeast transformation in dimorphic fungal pathogens. Med Mycol. 2016;54(6):648–653.
  • Mitchell NM, Sherrard AL, Dasari S, et al. Proteogenomic re-annotation of Coccidioides posadasii strain Silveira. Proteomics. 2018;18(1):1700173.
  • Xue J, Chen X, Selby D, et al. A genetically engineered live attenuated vaccine of Coccidioides posadasii protects BALB/c mice against coccidioidomycosis. Infect Immun. 2009;77(8):3196–3208.
  • Narra HP, Shubitz LF, Mandel MA, et al. A Coccidioides posadasii CPS1 deletion mutant is avirulent and protects mice from lethal injection. Infect Immun. 2016;84(10):3007–3016.
  • Hung CY, Yu JJ, Seshan KR, et al. A parasitic phase specific adhesin of Coccidioides immitis contributes to the virulence of this respiratory fungi pathogens. Infect Immun. 2002;70(7):3443–3456.
  • Wise HZ, Hung CY, Whiston E, et al. Extracellular ammonia at sites of pulmonary infection with Coccidioides posadasii contributes to severity of the respiratory disease. Microb Pathog. 2013;59-60:19–28.
  • Smith CE, Saito MT, Simons SA. Patterns of 39,500 serologic tests in coccidioidomycosis. JAMA. 1956;160(7):546–552.
  • Fish DG, Ampel NM, Galgiani JN, et al. Coccidioidomycosis during human immunodeficiency virus infection. A review of 77 patients. Medicine. 1990;69(6):384–391.
  • Bergstrom L, Yocum DE, Ampel NM, et al. Increased risks of coccidioidomycosis in patients treated with tumor necrosis factor alpha antagonists. Arthritis Rheum. 2004;60:1959–1966.
  • Odio CD, Marciano BE, Galgiani JN, et al. Risk factors for disseminated coccidioidomycosis, United States. Emerg Inf Dis. 2017;23(2):306–311.
  • Vinh DC, Schwartz B, Hsu AP, et al. Interleukin-12 receptor β1 deficiency predisposing to disseminated Coccidioidomycosis. Clin Infect Dis. 2011;52(4):e99–102.
  • Sampaio EP, Hus AP, Pechacek J, et al. Signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations and disseminated coccidioidomycosis and histoplasmosis. J Allergy Clin Immunol. 2013;13(6):1624–1634.
  • Woelk CH, Zhang JX, Viriyakosol S, et al. Factors regulated by interferon gamma and hypoxia-inducible factor 1A contribute to responses that protect mice from Coccidioides immitis infection. BMC Microbiol. 2012;12(1):218.
  • Del Pilar Jiménez-A M, Viriyakosol S, Walls L, et al. Susceptibility to Coccidioides species in C57BL/6 mice is associated with expression of a truncated splice variant of Dectin-1 (Clec7a). Genes Immun. 2008;9(4):338–348.
  • Fierer J, Walls L, Eckmann L, et al. Importance of interleukin-10 in genetic susceptibility of mice to Coccidioides immitis. Infect Immun. 1998;66(9):4397–4402.
  • Viriyakosol S, MdP J, Gurney M, et al. Dectin-1 is required for resistance to coccidioidomycosis in mice. mBio. 2013;4(1):e00597–612.
  • Willment JA, Marshall ASJ, Reid DM, et al. The human beta-glucan receptor is widely expressed and functionally equivalent to murine Dectin-1 on primary cells. Eur J Immunol. 2005;35(5):1539–1547.
  • Willment JA, Brown GS. Characterization of the human beta -glucan receptor and its alternatively spliced isoforms. J Biol Chem. 2001;276(47):43818–43823.
  • Hung CY, Gonzalez A, Wuthrich M, et al. Vaccine immunity to coccidioidomycosis occurs by early activation of three signal pathways of T helper cell response (Th1, Th2, and Th17). Infect Immun. 2011;79(11):4511–45222.
  • Odio CD, Milligan KL, McGowan K, et al. Endemic mycoses in patients with STAT3-mutated hyper-IgE (Job) syndrome. J Allergy Clin Immunol. 2015;136(5):1411–1413.
  • Chandresris MO, Melki I, Natividad A, et al. Autosomal dominant STAT3 deficiency and hyper-IgE syndrome: molecular, cellular, and clinical features from a French national survey. Medicine (Baltimore). 2015;91(4):e1–e10.
  • Ampel NM, Dols CL, Galgiani JN. Coccidioidomycosis during human immunodeficiency virus infection: results of a prospective study in a coccidioidal endemic area. Am J Med. 1993;94(3):235–240.
  • Margolis D, Viriyakosol S, Fierer J, et al. The role of reactive oxygen intermediates in experimental coccidioidomycosis in mice. BMC Microbiol. 2011;11:71.
  • Gonzalez A, Hung CY, Cole GT. Nitric oxide synthase activity has limited influence on the control of Coccidioides infection in mice. Microb Pathog. 2011;51(3):161–168.
  • Jimenez M, Walls L, Fierer J. High levels of interleukin-10 impair resistance to pulmonary coccidioidomycosis in mice in part through control of nitric oxide synthase 2 expression. Infect Immun. 2006;74(6):3387–3395.
  • Kirkland TN. A quest for a vaccine against coccidioidomycosis: a neglected disease in America. J Fungi (Basel). 2016;2(4). doi: 10.3390/jof2040034
  • Fierer J, Waters C, Walls L. CD4+ and CD8+ T cells can mediate vaccine-induced protection against Coccidioides immitis infections in mice. J Infect Dis. 2006;193(9):1323–1331.
  • Magee DM, Friedberg RL, Woltaske MD, et al. Role of B cells in vaccine-induced immunity against coccidioidomycosis. Infect Immun. 2005;73(10):7011–7013.
  • Abuodeh RO, Shubitz LF, Siegel E, et al. Resistance to Coccidioides immitis in mice after immunization with recombinant protein or a DNA vaccine of a proline-rich antigen. Infect Immun. 1999;67(6):2935–2940.
  • Delgado N, Xue J, Yu JJ, et al. A recombinant Beta-1,3-glucanosyltransferase homologue of Coccidioides posadasii protects mice against coccidioidomycosis. Infect Immun. 2003;71(6):3010–3019.
  • Tarcha EJ, Basrur V, Hung CY, et al. A recombinant aspartyl protease of Coccidioides posadasii induces protection against pulmonary coccidioidomycosis in mice. Infect Immun. 2006;74(1):516–527.
  • Hartgen BJ, Hung CY, Ostroff GR, et al. Construction and evaluation of a novel recombinant T cell epitope-based vaccine against coccidioidomycosis. Infect Immun. 2012;81(11):3960–3974.
  • Shubitz LF, Yu JJ, Hung CY, et al. Improved protection of mice against lethal respiratory infection with Coccidioides posadasii using two recombinant antigens expressed as a single protein. Vaccine. 2006;24(31–32):5904–5911.
  • Wüthrich M, Brandhorst TT, Sullivan TD, et al. Calnexin induces expansion of antigen-specific CD4(+) T cells that confer immunity to fungal ascomycetes via conserved epitopes. Cell Host Microb. 2015;17(4):452–465.