2,488
Views
14
CrossRef citations to date
0
Altmetric
Research Paper

Moonlighting of Haemophilus influenzae heme acquisition systems contributes to the host airway-pathogen interplay in a coordinated manner

, ORCID Icon, , ORCID Icon, , , , ORCID Icon & show all
Pages 315-333 | Received 09 Nov 2018, Accepted 12 Mar 2019, Published online: 11 Apr 2019

References

  • Ali MK, Kim RY, Karim R, et al. Role of iron in the pathogenesis of respiratory disease. Int J Biochem Cell Biol. 2017 Jul;88:181–195. PubMed PMID: 28495571.
  • Ghio AJ. Disruption of iron homeostasis and lung disease. Biochim Biophys Acta. 2009 Jul;1790(7):731–739. PubMed PMID: 19100311.
  • Barber MF, Elde NC. Buried treasure: evolutionary perspectives on microbial iron piracy. Trends Genet. 2015 Nov;31(11):627–636. PubMed PMID: 26431675.
  • Krewulak KD, Vogel HJ. Structural biology of bacterial iron uptake. Biochim Biophys Acta. 2008 Sep;1778(9):1781–1804. PubMed PMID: 17916327.
  • Choby JE, Skaar EP. Heme synthesis and acquisition in bacterial pathogens. J Mol Biol. 2016 Aug 28;428(17):3408–3428. PubMed PMID: 270192980.
  • Cassat JE, Skaar EP. Iron in infection and immunity. Cell Host Microbe. 2013 May 15;13(5):509–519. PubMed PMID: 23684303.
  • Hood MI, Skaar EP. Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol. 2012 Jul 16;10(8):525–537. PubMed PMID: 22796883.
  • Runyen-Janecky LJ. Role and regulation of heme iron acquisition in gram-negative pathogens. Front Cell Infect Microbiol. 2013;3:55. PubMed PMID: 24116354.
  • Gammella E, Buratti P, Cairo G, et al. Macrophages: central regulators of iron balance. Metallomics. 2014 Aug;6(8):1336–1345. PubMed PMID: 24905850.
  • Ganz T. Macrophages and systemic iron homeostasis. PubMed PMID: 22441209 J Innate Immun. 2012;4(5–6):446–453.
  • Ghio AJ, Turi JL, Yang F, et al. Iron homeostasis in the lung. Biol Res. 2006;39(1):67–77. PubMed PMID: 16629166.
  • Cloonan SM, Mumby S, Adcock IM, et al. The “iron”-y of iron overload and iron deficiency in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2017 Nov 1;196(9):1103–1112. PubMed PMID: 28410559.
  • Ghio AJ, Hilborn ED, Stonehuerner JG, et al. Particulate matter in cigarette smoke alters iron homeostasis to produce a biological effect. Am J Respir Crit Care Med. 2008 Dec 1;178(11):1130–1138. PubMed PMID: 18723436.
  • Ghio AJ, Stonehuerner JG, Richards JH, et al. Iron homeostasis and oxidative stress in idiopathic pulmonary alveolar proteinosis: a case-control study. Respir Res. 2008 Jan 23;9:10. PubMed PMID: 18215276.
  • Gozzelino R, Arosio P. Iron homeostasis in health and disease. Int J Mol Sci. 2016 Jan 20;17(1):130. PubMed PMID: 26805813.
  • Berg K, Wright JL. The pathology of chronic obstructive pulmonary disease: progress in the 20th and 21st centuries. Arch Pathol Lab Med. 2016 Dec;140(12):1423–1428. PubMed PMID: 27922768.
  • Wong J, Magun BE, Wood LJ. Lung inflammation caused by inhaled toxicants: a review. Int J Chron Obstruct Pulmon Dis. 2016;11:1391–1401. PubMed PMID: 27382275.
  • Nelson ME, O’Brien-Ladner AR, Wesselius LJ. Regional variation in iron and iron-binding proteins within the lungs of smokers. Am J Respir Crit Care Med. 1996 Apr;153(4 Pt 1):1353–1358. PubMed PMID: 8616566.
  • O’Brien-Ladner AR, Nelson SR, Murphy WJ, et al. Iron is a regulatory component of human IL-1b production. Support for regional variability in the lung. Am J Respir Cell Mol Biol. 2000 Jul;23(1):112–119. PubMed PMID: 10873160.
  • Thompson AB, Bohling T, Heires A, et al. Lower respiratory tract iron burden is increased in association with cigarette smoking. J Lab Clin Med. 1991 Jun;117(6):493–499. PubMed PMID: 2045717.
  • Chappell SL, Daly L, Lotya J, et al. The role of IREB2 and transforming growth factor b-1 genetic variants in COPD: a replication case-control study. BMC Med Genet. 2011 Feb 14;12:24. PubMed PMID: 21320324.
  • Cloonan SM, Glass K, Laucho-Contreras ME, et al. Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nat Med. 2016 Feb;22(2):163–174. PubMed PMID: 26752519.
  • DeMeo DL, Mariani T, Bhattacharya S, et al. Integration of genomic and genetic approaches implicates IREB2 as a COPD susceptibility gene. Am J Hum Genet. 2009 Oct;85(4):493–502. PubMed PMID: 19800047.
  • Eagan TM, Damas JK, Ueland T, et al. Neutrophil gelatinase-associated lipocalin: a biomarker in COPD. Chest. 2010 Oct;138(4):888–895. PubMed PMID: 20495108.
  • Engstrom G, Segelstorm N, Ekberg-Aronsson M, et al. Plasma markers of inflammation and incidence of hospitalisations for COPD: results from a population-based cohort study. Thorax. 2009 Mar;64(3):211–215. PubMed PMID: 18988660.
  • Philippot Q, Deslee G, Adair-Kirk TL, et al. Increased iron sequestration in alveolar macrophages in chronic obstructive pulmonary disease. PLoS One. 2014;9(5):e96285. PubMed PMID: 24789352.
  • Pillai SG, Ge D, Zhu G, et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet. 2009 Mar;5(3):e1000421. PubMed PMID: 19300482.
  • Tandara L, Grubisic TZ, Ivan G, et al. Systemic inflammation up-regulates serum hepcidin in exacerbations and stabile chronic obstructive pulmonary disease. Clin Biochem. 2015 Dec;48(18):1252–1257. PubMed PMID: 26164540.
  • Skaar EP. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog. 2010 Aug 12;6(8):e1000949. PubMed PMID: 20711357.
  • Soares MP, Weiss G. The iron age of host-microbe interactions. EMBO Rep. 2015 Nov;16(11):1482–1500. PubMed PMID: 26474900.
  • Ahearn CP, Gallo MC, Murphy TF. Insights on persistent airway infection by non-typeable Haemophilus influenzae in chronic obstructive pulmonary disease. Pathog Dis. 2017 Jun 1;75(4). PubMed PMID: 28449098. DOI:10.1093/femspd/ftx042.
  • Bandi V, Apicella MA, Mason E, et al. Nontypeable Haemophilus influenzae in the lower respiratory tract of patients with chronic bronchitis. Am J Respir Crit Care Med. 2001 Dec 1;164(11):2114–2119. PubMed PMID: 11739144.
  • Finney LJ, Ritchie A, Pollard E, et al. Lower airway colonization and inflammatory response in COPD: a focus on Haemophilus influenzae. Int J Chron Obstruct Pulmon Dis. 2014;9:1119–1132. PubMed PMID: 25342897.
  • Sethi S, Evans N, Grant BJ, et al. New strains of bacteria and exacerbations of chronic obstructive pulmonary disease. N Engl J Med. 2002 Aug 15;347(7):465–471. PubMed PMID: 12181400.
  • Sethi S, Wrona C, Eschberger K, et al. Inflammatory profile of new bacterial strain exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008 Mar 1;177(5):491–497. PubMed PMID: 18079493.
  • Anzueto A. Impact of exacerbations on COPD. Eur Respir Rev. 2010 Jun;19(116):113–118. PubMed PMID: 20956179.
  • Desai H, Eschberger K, Wrona C, et al. Bacterial colonization increases daily symptoms in patients with chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2014 Mar;11(3):303–309. PubMed PMID: 24423399.
  • Murphy TF, Brauer AL, Schiffmacher AT, et al. Persistent colonization by Haemophilus influenzae in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2004 Aug 1;170(3):266–272. PubMed PMID: 15117742.
  • Loeb MR. Ferrochelatase activity and protoporphyrin IX utilization in Haemophilus influenzae. J Bacteriol. 1995 Jun;177(12):3613–3615. PubMed PMID: 7768877.
  • Schlor S, Herbert M, Rodenburg M, et al. Characterization of ferrochelatase (hemH) mutations in Haemophilus influenzae. Infect Immun. 2000 May;68(5):3007–3009. PubMed PMID: 10769004.
  • Granick S, Gilder H. The porphyrin requirements of Haemophilus influenzae and some functions of the vinyl and propionic acid side chains of heme. J Gen Physiol. 1946 Sep;30:1–13. PubMed PMID: 20997746.
  • Morton DJ, Smith A, Ren Z, et al. Identification of a haem-utilization protein (Hup) in Haemophilus influenzae. Microbiology. 2004 Dec;150(Pt 12):3923–3933. PubMed PMID: 15583146.
  • LaCross NC, Marrs CF, Gilsdorf JR. Otitis media associated polymorphisms in the hemin receptor HemR of nontypeable Haemophilus influenzae. Infect Genet Evol. 2014 Aug;26:47–57. PubMed PMID: 24820341.
  • Jin H, Ren Z, Pozsgay JM, et al. Cloning of a DNA fragment encoding a heme-repressible hemoglobin-binding outer membrane protein from Haemophilus influenzae. Infect Immun. 1996 Aug;64(8):3134–3141. PubMed PMID: 8757844.
  • Jin H, Ren Z, Whitby PW, et al. Characterization of hgpA, a gene encoding a haemoglobin/haemoglobin-haptoglobin-binding protein of Haemophilus influenzae. Microbiology. 1999 Apr;145(Pt 4):905–914. PubMed PMID: 10220170.
  • Maciver I, Latimer JL, Liem HH, et al. Identification of an outer membrane protein involved in utilization of hemoglobin-haptoglobin complexes by nontypeable Haemophilus influenzae. Infect Immun. 1996 Sep;64(9):3703–3712. PubMed PMID: 8751920.
  • Morton DJ, Bakaletz LO, Jurcisek JA, et al. Reduced severity of middle ear infection caused by nontypeable Haemophilus influenzae lacking the hemoglobin/hemoglobin-haptoglobin binding proteins (Hgp) in a chinchilla model of otitis media. Microb Pathog. 2004 Jan;36(1):25–33. PubMed PMID: 14643637.
  • Morton DJ, Whitby PW, Jin H, et al. Effect of multiple mutations in the hemoglobin- and hemoglobin-haptoglobin-binding proteins, HgpA, HgpB, and HgpC, of Haemophilus influenzae type b. Infect Immun. 1999 Jun;67(6):2729–2739. PubMed PMID: 10338475.
  • Ren Z, Jin H, Morton DJ, et al. hgpB, a gene encoding a second Haemophilus influenzae hemoglobin- and hemoglobin-haptoglobin-binding protein. Infect Immun. 1998 Oct;66(10):4733–4741. PubMed PMID: 9746572.
  • Seale TW, Morton DJ, Whitby PW, et al. Complex role of hemoglobin and hemoglobin-haptoglobin binding proteins in Haemophilus influenzae virulence in the infant rat model of invasive infection. Infect Immun. 2006 Nov;74(11):6213–6225. PubMed PMID: 16966415.
  • Cope LD, Love RP, Guinn SE, et al. Involvement of HxuC outer membrane protein in utilization of hemoglobin by Haemophilus influenzae. Infect Immun. 2001 Apr;69(4):2353–2363. PubMed PMID: 11254593.
  • Cope LD, Thomas SE, Hrkal Z, et al. Binding of heme-hemopexin complexes by soluble HxuA protein allows utilization of this complexed heme by Haemophilus influenzae. Infect Immun. 1998 Sep;66(9):4511–4516. PubMed PMID: 9712810.
  • Fournier C, Smith A, Delepelaire P. Haem release from haemopexin by HxuA allows Haemophilus influenzae to escape host nutritional immunity. Mol Microbiol. 2011 Apr;80(1):133–148. PubMed PMID: 21276097.
  • Hanson MS, Pelzel SE, Latimer J, et al. Identification of a genetic locus of Haemophilus influenzae type b necessary for the binding and utilization of heme bound to human hemopexin. Proc Natl Acad Sci U S A. 1992 Mar 01;89(5):1973–1977. PubMed PMID: 1542695.
  • Morton DJ, Seale TW, Madore LL, et al. The haem-haemopexin utilization gene cluster (hxuCBA) as a virulence factor of Haemophilus influenzae. Microbiology. 2007 Jan;153(Pt 1):215–224. PubMed PMID: 17185550.
  • Wong JC, Patel R, Kendall D, et al. Affinity, conservation, and surface exposure of hemopexin-binding proteins in Haemophilus influenzae. Infect Immun. 1995 Jun;63(6):2327–2333. PubMed PMID: 7768617.
  • Hanson MS, Slaughter C, Hansen EJ. The hbpA gene of Haemophilus influenzae type b encodes a heme-binding lipoprotein conserved among heme-dependent Haemophilus species. Infect Immun. 1992 Jun;60(6):2257–2266. PubMed PMID: 1339409.
  • Mason KM, Raffel FK, Ray WC, et al. Heme utilization by nontypeable Haemophilus influenzae is essential and dependent on Sap transporter function. J Bacteriol. 2011 May;193(10):2527–2535. PubMed PMID: 21441512.
  • Morton DJ, Madore LL, Smith A, et al. The heme-binding lipoprotein (HbpA) of Haemophilus influenzae: role in heme utilization. FEMS Microbiol Lett. 2005 Dec 15;253(2):193–199. PubMed PMID: 16289530.
  • Morton DJ, Seale TW, Bakaletz LO, et al. The heme-binding protein (HbpA) of Haemophilus influenzae as a virulence determinant. Int J Med Microbiol. 2009 Nov;299(7):479–488. PubMed PMID: 19451029.
  • Morton DJ, Seale TW, Vanwagoner TM, et al. The dppBCDF gene cluster of Haemophilus influenzae: role in heme utilization. BMC Res Notes. 2009 Aug 24;2:166. PubMed PMID: 19703293.
  • Vergauwen B, Elegheert J, Dansercoer A, et al. Glutathione import in Haemophilus influenzae Rd is primed by the periplasmic heme-binding protein HbpA. Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13270–13275. PubMed PMID: 20628015.
  • Al Jubair T, Singh B, Fleury C, et al. Haemophilus influenzae stores and distributes hemin by using protein E. Int J Med Microbiol. 2014 Jul;304(5–6):662–668. PubMed PMID: 24863527.
  • Szelestey BR, Heimlich DR, Raffel FK, et al. Haemophilus responses to nutritional immunity: epigenetic and morphological contribution to biofilm architecture, invasion, persistence and disease severity. PLoS Pathog. 2013;9(10):e1003709. PubMed PMID: 24130500.
  • van Zundert GCP, Rodrigues J, Trellet M, et al. The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol. 2016 Feb 22;428(4):720–725. PubMed PMID: 26410586.
  • Wassenaar TA, Van Dijk M, Loureiro-Ferreira N, et al. WeNMR: Structural biology on the grid. J Grid Comput. 2012;10(4):743–767.
  • Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010 Apr;5(4):725–738. PubMed PMID: 20360767.
  • Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008 Jan 23;9:40. PubMed PMID: 18215316.
  • Yang J, Roy A, Zhang Y. Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics. 2013 Oct 15;29(20):2588–2595. PubMed PMID: 23975762.
  • Yang J, Roy A, Zhang Y. BioLiP: a semi-manually curated database for biologically relevant ligand-protein interactions. Nucleic Acids Res. 2013 Jan;41(Database issue):D1096–103. PubMed PMID: 23087378.
  • Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model. 2011 Oct 24;51(10):2778–2786. PubMed PMID: 21919503.
  • Herriott RM, Meyer EY, Vogt M, et al. Defined medium for growth of Haemophilus influenzae. J Bacteriol. 1970 Feb;101(2):513–516. PubMed PMID: 5308770.
  • Vergauwen B, Pauwels F, Vaneechoutte M, et al. Exogenous glutathione completes the defense against oxidative stress in Haemophilus influenzae. J Bacteriol. 2003 Mar;185(5):1572–1581. PubMed PMID: 12591874.
  • Allen S, Zaleski A, Johnston JW, et al. Novel sialic acid transporter of Haemophilus influenzae. Infect Immun. 2005 Sep;73(9):5291–5300. PubMed PMID: 16113244.
  • Tracy E, Ye F, Baker BD, et al. Construction of non-polar mutants in Haemophilus influenzae using FLP recombinase technology. BMC Mol Biol.2008 Nov 11;9:101. PubMed PMID: 19014437.
  • Sinha S, Mell JC, Redfield RJ. Seventeen Sxy-dependent cyclic AMP receptor protein site-regulated genes are needed for natural transformation in Haemophilus influenzae. J Bacteriol. 2012 Oct;194(19):5245–5254. PubMed PMID: 22821979.
  • Herriott RM, Meyer EM, Vogt M. Defined nongrowth media for stage II development of competence in Haemophilus influenzae. J Bacteriol. 1970 Feb;101(2):517–524. PubMed PMID: 5308771.
  • Clinical & Laboratory Standards Institute. CSLI Guidelines. Performance Standards for Antimicrobial Susceptibility Testing: 27th Edition. CLSI M100-S27. 2017.
  • Euba B, Lopez-Lopez N, Rodriguez-Arce I, et al. Resveratrol therapeutics combines both antimicrobial and immunomodulatory properties against respiratory infection by nontypeable Haemophilus influenzae. Sci Rep. 2017 Oct 16;7(1):12860. PubMed PMID: 29038519. DOI:10.1038/s41598-017-13034-7.
  • Euba B, Moleres J, Segura V, et al. Genome expression profiling-based identification and administration efficacy of host-directed antimicrobial drugs against respiratory infection by nontypeable Haemophilus influenzae. Antimicrob Agents Chemother. 2015 Dec;59(12):7581–7592. PubMed PMID: 26416856.
  • Euba B, Moleres J, Viadas C, et al. Relationship between azithromycin susceptibility and administration efficacy for nontypeable Haemophilus influenzae respiratory infection. Antimicrob Agents Chemother. 2015 May;59(5):2700–2712. PubMed PMID: 25712355.
  • Euba B, Moleres J, Viadas C, et al. Relative contribution of P5 and Hap surface proteins to nontypeable Haemophilus influenzae interplay with the host upper and lower airways. PLoS One. 2015;10(4):e0123154. PubMed PMID: 25894755.
  • Lopez-Gomez A, Cano V, Moranta D, et al. Host cell kinases, α5 and β1 integrins, and Rac1 signalling on the microtubule cytoskeleton are important for non-typeable Haemophilus influenzae invasion of respiratory epithelial cells. Microbiology. 2012 Sep;158(Pt 9):2384–2398. PubMed PMID: 22723286.
  • Morey P, Cano V, Marti-Lliteras P, et al. Evidence for a non-replicative intracellular stage of nontypeable Haemophilus influenzae in epithelial cells. Microbiology. 2011 Jan;157(Pt 1):234–250. PubMed PMID: 20929955.
  • Morey P, Viadas C, Euba B, et al. Relative contributions of lipooligosaccharide inner and outer core modifications to nontypeable Haemophilus influenzae pathogenesis. Infect Immun. 2013 Nov;81(11):4100–4111. PubMed PMID: 23980106.
  • Rodriguez-Arce I, Marti S, Euba B, et al. Inactivation of the thymidylate synthase thyA in non-typeable Haemophilus influenzae modulates antibiotic resistance and has a strong impact on its interplay with the host airways. Front Cell Infect Microbiol. 2017;7:266. PubMed PMID: 28676846.
  • Grillo MJ, Blasco JM, Gorvel JP, et al. What have we learned from brucellosis in the mouse model? Vet Res.2012 Apr 13;43:29. PubMed PMID: 22500859; PubMed Central PMCID: PMCPMC3410789.
  • Dunten P, Mowbray SL. Crystal structure of the dipeptide binding protein from Escherichia coli involved in active transport and chemotaxis. Protein Sci. 1995 Nov;4(11):2327–2334. PubMed PMID: 8563629.
  • Dunten P, Mowbray SL. Modeling of the structure of the Haemophilus influenzae heme-binding protein suggests a mode of heme interaction. Protein Sci. 1995 Nov;4(11):2335–2340. PubMed PMID: 8563630.
  • Tanaka KJ, Pinkett HW. Oligopeptide-binding protein from nontypeable Haemophilus influenzae has ligand-specific sites to accommodate peptides and heme in the binding pocket. J Biol Chem.2019 Jan 18;294(3):1070–1082. PubMed PMID: 30455346.
  • Singh B, Al-Jubair T, Morgelin M, et al. The unique structure of Haemophilus influenzae protein E reveals multiple binding sites for host factors. Infect Immun. 2013 Mar;81(3):801–814. PubMed PMID: 23275089.
  • Zambolin S, Clantin B, Chami M, et al. Structural basis for haem piracy from host haemopexin by Haemophilus influenzae. Nat Commun.2016 May 18;7:11590. PubMed PMID: 27188378.
  • Whitby PW, Sim KE, Morton DJ, et al. Transcription of genes encoding iron and heme acquisition proteins of Haemophilus influenzae during acute otitis media. Infect Immun. 1997 Nov;65(11):4696–4700. PubMed PMID: 9353052.
  • Stauff DL, Skaar EP. The heme sensor system of Staphylococcus aureus. Contrib Microbiol. 2009;16:120–135. PubMed PMID: 19494582.
  • Whitby PW, Seale TW, VanWagoner TM, et al. The iron/heme regulated genes of Haemophilus influenzae: comparative transcriptional profiling as a tool to define the species core modulon. BMC Genomics.2009 Jan 07;10:6. PubMed PMID: 19128474.
  • Whitby PW, Vanwagoner TM, Seale TW, et al. Transcriptional profile of Haemophilus influenzae: effects of iron and heme. J Bacteriol. 2006 Aug;188(15):5640–5645. PubMed PMID: 16855256.
  • Fleischmann RD, Adams MD, White O, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science.1995 Jul 28;269(5223):496–512. PubMed PMID: 7542800.
  • Adhikari P, Kirby SD, Nowalk AJ, et al. Biochemical characterization of a Haemophilus influenzae periplasmic iron transport operon. J Biol Chem.1995 Oct 20;270(42):25142–25149. PubMed PMID: 7559648.
  • Anderson DS, Adhikari P, Nowalk AJ, et al. The hFbpABC transporter from Haemophilus influenzae functions as a binding-protein-dependent ABC transporter with high specificity and affinity for ferric iron. J Bacteriol. 2004 Sep;186(18):6220–6229. PubMed PMID: 15342592.
  • Anderson DS, Adhikari P, Weaver KD, et al. The Haemophilus influenzae hFbpABC Fe3+ transporter: analysis of the membrane permease and development of a gallium-based screen for mutants. J Bacteriol. 2007 Jul;189(14):5130–5141. PubMed PMID: 17496104.
  • Sanders JD, Cope LD, Hansen EJ. Identification of a locus involved in the utilization of iron by Haemophilus influenzae. Infect Immun. 1994 Oct;62(10):4515–4525. PubMed PMID: 7927717.
  • Mason KM, Bruggeman ME, Munson RS, et al. The non-typeable Haemophilus influenzae Sap transporter provides a mechanism of antimicrobial peptide resistance and SapD-dependent potassium acquisition. Mol Microbiol. 2006 Dec;62(5):1357–1372. PubMed PMID: 17064364.
  • Mason KM, Munson RS Jr., Bakaletz LO. A mutation in the sap operon attenuates survival of nontypeable Haemophilus influenzae in a chinchilla model of otitis media. Infect Immun. 2005 Jan;73(1):599–608. PubMed PMID: 15618200.
  • Raffel FK, Szelestey BR, Beatty WL, et al. The Haemophilus influenzae Sap transporter mediates bacterium-epithelial cell homeostasis. Infect Immun. 2013 Jan;81(1):43–54. PubMed PMID: 23071138.
  • Ronander E, Brant M, Eriksson E, et al. Nontypeable Haemophilus influenzae adhesin protein E: characterization and biological activity. J Infect Dis.2009 Feb 15;199(4):522–531. PubMed PMID: 19125675.
  • Ronander E, Brant M, Janson H, et al. Identification of a novel Haemophilus influenzae protein important for adhesion to epithelial cells. Microbes Infect. 2008 Jan;10(1):87–96. PubMed PMID: 18069033.
  • Morris D, Khurasany M, Nguyen T, et al. Glutathione and infection. Biochim Biophys Acta. 2013 May;1830(5):3329–3349. PubMed PMID: 23089304.
  • Sporer AJ, Kahl LJ, Price-Whelan A, et al. Redox-based regulation of bacterial development and behavior. Annu Rev Biochem.2017 Jun 20;86:777–797. PubMed PMID: 28654321.
  • Huang W, Wilks A. Extracellular heme uptake and the challenge of bacterial cell membranes. Annu Rev Biochem.2017 Jun 20;86:799–823. PubMed PMID: 28426241.
  • Carver PL. The battle for iron between humans and microbes. PubMed PMID: 28730969 Curr Med Chem. 2018;25(1):85–96.
  • Shepherd M, Heath MD, Poole RK. NikA binds heme: a new role for an Escherichia coli periplasmic nickel-binding protein. Biochemistry.2007 May 1;46(17):5030–5037. PubMed PMID: 17411076.
  • Shelton CL, Raffel FK, Beatty WL, et al. Sap transporter mediated import and subsequent degradation of antimicrobial peptides in Haemophilus. PLoS Pathog. 2011 Nov;7(11):e1002360. PubMed PMID: 22072973.
  • Garmendia J, Viadas C, Calatayud L, et al. Characterization of nontypeable Haemophilus influenzae isolates recovered from adult patients with underlying chronic lung disease reveals genotypic and phenotypic traits associated with persistent infection. PLoS One. 2014;9(5):e97020. PubMed PMID: 24824990.
  • Hardison RLHD, Harrison A, Beatty WL, et al. Transient nutrient deprivation promotes macropinocytosis-dependent intracellular bacterial community development. mSphere. 2018;3(5):e00286–18.
  • Vogel AR, Szelestey BR, Raffel FK, et al. SapF-mediated heme-iron utilization enhances persistence and coordinates biofilm architecture of Haemophilus. Front Cell Infect Microbiol. 2012;2:42. PubMed PMID: 22919633.
  • Gawronski JD, Wong SM, Giannoukos G, et al. Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc Natl Acad Sci U S A.2009 Sep 22;106(38):16422–16427. PubMed PMID: 19805314.
  • Hood DW, Makepeace K, Deadman ME, et al. Sialic acid in the lipopolysaccharide of Haemophilus influenzae: strain distribution, influence on serum resistance and structural characterization. Mol Microbiol. 1999 Aug;33(4):679–692. PubMed PMID: 10447878.