6,308
Views
83
CrossRef citations to date
0
Altmetric
Review Article

Edwardsiella piscicida: A versatile emerging pathogen of fish

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 555-567 | Received 26 Feb 2019, Accepted 14 May 2019, Published online: 06 Jun 2019

References

  • Park SB, Aoki T, Jung TS. Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. Vet Res. 2012;43(1):67.
  • Buján N, Toranzo AE, Magariños B. Edwardsiella piscicida: A significant bacterial pathogen of cultured fish. Dis Aquat Organ. 2018;131(1):59–71.
  • Vayssier-Taussat M, Albina E, Citti C, et al. Shifting the paradigm from pathogens to pathobiome: new concepts in the light of meta-omics. Front Cell Infect Microbiol. 2014;4:29.
  • Hirai Y, Asahata-Tago S, Ainoda Y, et al. Edwardsiella tarda bacteremia. A rare but fatal water-and foodborne infection: review of the literature and clinical cases from a single centre. Can J Infect Dis Med Microbiol. 2015;26(6):313–318.
  • Grimont PA, Grimont F, Richard C, et al. Edwardsiella hoshinae, a new species of Enterobacteriaceae. Curr Microbiol. 1980;4(6):347–351.
  • Hawke JP, Mcwhorter AC, Steigerwalt AG, et al. Edwardsiella ictaluri sp. nov., the causative agent of enteric septicemia of catfish. Int J Syst Evol Microbiol. 1981;31(4):396–400.
  • Williams M, Gillaspy A, Dyer D, et al. Genome sequence of Edwardsiella ictaluri 93-146, a strain associated with a natural channel catfish outbreak of enteric septicemia of catfish. J Bacteriol. 2012;194(3):740–741.
  • Zhang M, Jiao XD, Hu YH, et al. Attenuation of Edwardsiella tarda virulence by small peptides that interfere with LuxS/autoinducer type 2 quorum sensing. Appl Environ Microbiol. 2009;75(12):3882–3890.
  • Zhang M, Sun K, Sun L. Regulation of autoinducer 2 production and luxS expression in a pathogenic Edwardsiella tarda strain. Microbiology. 2008;154(7):2060–2069.
  • Ewing W, Mcwhorter A, Escobar M, et al. Edwardsiella, a new genus of Enterobacteriaceae based on a new species, E. tarda. Int J Syst Evol Microbiol. 1965;15(1):33–38.
  • Meyer F, Bullock G. Edwardsiella tarda, a new pathogen of channel catfish (Ictalurus punctatus). Appl Microbiol. 1973;25(1):155–156.
  • Abayneh T, Colquhoun D, Sørum H. Edwardsiella piscicida sp. nov., a novel species pathogenic to fish. J Appl Microbiol. 2013;114(3):644–654.
  • Shao S, Lai Q, Liu Q, et al. Phylogenomics characterization of a highly virulent Edwardsiella strain ET080813T encoding two distinct T3SS and three T6SS gene clusters: propose a novel species as Edwardsiella anguillarum sp. nov. Syst Appl Microbiol. 2015;38(1):36–47.
  • Yang M, Lv Y, Xiao J, et al. Edwardsiella comparative phylogenomics reveal the new intra/inter-species taxonomic relationships, virulence evolution and niche adaptation mechanisms. PLoS One. 2012;7(5):e36987.
  • Buján N, Mohammed H, Balboa S, et al. Genetic studies to re-affiliate Edwardsiella tarda fish isolates to Edwardsiella piscicida and Edwardsiella anguillarum species. Syst Appl Microbiol. 2018;41(1):30–37.
  • Nakamura Y, Takano T, Yasuike M, et al. Comparative genomics reveals that a fish pathogenic bacterium Edwardsiella tarda has acquired the locus of enterocyte effacement (LEE) through horizontal gene transfer. BMC Genomics. 2013;14(1):642.
  • Katharios P, Kalatzis PG, Kokkari C, et al. Characterization of a highly virulent Edwardsiella anguillarum strain isolated from Greek aquaculture, and a spontaneously induced prophage therein. Front Microbiol. 2019;10:141.
  • Ucko M, Colorni A, Dubytska L, et al. Edwardsiella piscicida-like pathogen in cultured grouper. Dis Aquat Organ. 2016;121(2):141–148.
  • Shao J, Guo Q, Hu R, et al. Comparative genomic insights into the taxonomy of Edwardsiella tarda isolated from different hosts: marine, freshwater and migratory fish. Aquac Res. 2018;49(1):197–204.
  • Abbott SL, Janda JM. The Genus Edwardsiella. Prokaryotes. 2006;6: 72–89. New York: Springer.
  • Tan Y, Zheng J, Tung S, et al. Role of type III secretion in Edwardsiella tarda virulence. Microbiology. 2005;151(7):2301–2313.
  • Zheng J, Leung KY. Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol. 2007;66(5):1192–1206.
  • Xie HX, Yu HB, Zheng J, et al. EseG, an effector of the type III secretion system of Edwardsiella tarda, triggers microtubule destabilization. Infect Immun. 2010;78(12):5011–5021.
  • Cao H, Han F, Tan J, et al. Edwardsiella piscicida type III secretion system effector EseK inhibits mitogen-activated protein kinase phosphorylation and promotes bacterial colonization in zebrafish Larvae. Infect Immun. 2018;86(9):e00233–18.
  • Hilbi H, Haas A. Secretive bacterial pathogens and the secretory pathway. Traffic. 2012;13(9):1187–1197.
  • Raymond B, Young JC, Pallett M, et al. Subversion of trafficking, apoptosis, and innate immunity by type III secretion system effectors. Trends Microbiol. 2013;21(8):430–441.
  • Casadevall A. Evolution of intracellular pathogens. Annu Rev Microbiol. 2008;62:19–33.
  • Smith LM, May RC. Mechanisms of microbial escape from phagocyte killing. Biochem Soc Trans. 2013;41(2):475–490.
  • Ling SHM, Wang X, Xie L, et al. Use of green fluorescent protein (GFP) to study the invasion pathways of Edwardsiella tarda in in vivo and in vitro fish models. Microbiology. 2000;146(1):7–19.
  • Sui ZH, Xu HJ, Wang HH, et al. Intracellular trafficking pathways of Edwardsiella tarda: from clathrin-and caveolin-mediated endocytosis to endosome and lysosome. Front Cell Infect Microbiol. 2017;7:400.
  • Zhang L, Ni C, Xu W, et al. Intramacrophage infection reinforces the virulence of Edwardsiella tarda. J Bacteriol. 2016;198(10):1534–1542.
  • Xie HX, Lu JF, Zhou Y, et al. Identification and functional characterization of a novel Edwardsiella tarda effector EseJ. Infect Immun. 2015;83(4):1650–1660.
  • Baumgartner WA, Dubytska L, Rogge ML, et al. Modulation of vacuolar pH is required for replication of Edwardsiella ictaluri in channel catfish (Ictalurus punctatus) macrophages. Infect Immun. 2014;82(6):2329–2336.
  • Fang S, Zhang L, Lou Y, et al. Intracellular translocation and localization of Edwardsiella tarda type III secretion system effector EseG in host cells. Microb Pathog. 2016;97:166–171.
  • Ling SH, Wang XH, Lim TM, et al. Green fluorescent protein-tagged Edwardsiella tarda reveals portal of entry in fish. FEMS Microbiol Lett. 2001;194(2):239–243.
  • Leung KY, Siame BA, Tenkink BJ, et al. Edwardsiella tarda–virulence mechanisms of an emerging gastroenteritis pathogen. Microbes Infect. 2012;14(1):26–34.
  • Liu Y, Zhang H, Liu Y, et al. Determination of the heterogeneous interactome between Edwardsiella tarda and fish gills. J Proteomics. 2012;75(4):1119–1128.
  • Yang G, Billings G, Hubbard TP, et al. Time-resolved transposon insertion sequencing reveals genome-wide fitness dynamics during infection. MBio. 2017;8(5):e01581–17.
  • Srinivasa Rao PS, Yamada Y, Tan YP, et al. Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol Microbiol. 2004;53(2):573–586.
  • Schlenker C, Surawicz CM. Emerging infections of the gastrointestinal tract. Best Pract Res Clin Gastroenterol. 2009;23(1):89–99.
  • Wang IK, Kuo HL, Chen YM, et al. Extraintestinal manifestations of Edwardsiella tarda infection. Int J Clin Pract. 2005;59(8):917–921.
  • Ebisawa KF, Nishimura S, Yamamoto S, et al. Mycotic aneurysm caused by Edwardsiella tarda successfully treated with stenting and suppressive antibiotic therapy: A case report and systematic review. Ann Clin Microbiol Antimicrob. 2018;17(1):21.
  • FAO. In: The State of World Fisheries and Aquaculture 2018. Meeting the sustainable development goals. 2018; Rome. Licence: CC BY-NC-SA 3.0 IGO.
  • Cabello FC, Godfrey HP, Buschmann AH, et al. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. Lancet Infect Dis. 2016;16(7):e127–e133.
  • Xu T, Zhang X-H. Edwardsiella tarda: an intriguing problem in aquaculture. Aquaculture. 2014;431:129–135.
  • Miller RA, Harbottle H. Antimicrobial drug resistance in fish pathogens. Microbiol Spectr. 2018;6:1.
  • Groisman EA, Ochman H. Pathogenicity islands: bacterial evolution in quantum leaps. Cell. 1996;87(5):791–794.
  • Santos L, Ramos F. Antimicrobial resistance in aquaculture: current knowledge and alternatives to tackle the problem. Int J Antimicrob Agents. 2018;52(2):135–143.
  • Liu Y, Gao Y, Liu X, et al. Transposon insertion sequencing reveals T4SS as the major genetic trait for conjugation transfer of multi-drug resistance pEIB202 from Edwardsiella. BMC Microbiol. 2017;17(1):112.
  • Yang S, Carlson K. Evolution of antibiotic occurrence in a river through pristine, urban and agricultural landscapes. Water Res. 2003;37(19):4645–4656.
  • Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev. 2011;24(4):718–733.
  • Zhao JY, Dang HY. Coastal seawater bacteria harbor a large reservoir of plasmid-mediated quinolone resistance determinants in Jiaozhou Bay, China. Microb Ecol. 2012;64(1):187–199.
  • Blair JM, Webber MA, Baylay AJ, et al. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42–51.
  • Sørensen SJ, Bailey M, Hansen LH, et al. Studying plasmid horizontal transfer in situ: A critical review. Nat Rev Microbiol. 2005;3(9):700–710.
  • Juhas M. Horizontal gene transfer in human pathogens. Crit Rev Microbiol. 2015;41(1):101–108.
  • Welch TJ, Fricke WF, McDermott PF, et al. Multiple antimicrobial resistance in plague: an emerging public health risk. PLoS One. 2007;2(3):e309.
  • Bruun MS, Schmidt AS, Dalsgaard I, et al. Conjugal transfer of large plasmids conferring oxytetracycline (OTC) resistance: transfer between environmental aeromonads, fish-pathogenic bacteria, and Escherichia coli. J Aquat Anim Health. 2003;15(1):69–79.
  • Poirel L, Rodriguez-Martinez JM, Mammeri H, et al. Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrob Agents Chemother. 2005;49(8):3523–3525.
  • Sun K, Wang HL, Zhang M, et al. Genetic mechanisms of multi-antimicrobial resistance in a pathogenic Edwardsiella tarda strain. Aquaculture. 2009;289(1–2):134–139.
  • Yu JE, Cho MY, Kim JW, et al. Large antibiotic-resistance plasmid of Edwardsiella tarda contributes to virulence in fish. Microb Pathog. 2012;52(5):259–266.
  • Lv Y, Xiao J, Liu Q, et al. Systematic mutation analysis of two-component signal transduction systems reveals EsrA-EsrB and PhoP-PhoQ as the major virulence regulators in Edwardsiella tarda. Vet Microbiol. 2012;157(1–2):190–199.
  • Yang W, Wang L, Zhang L, et al. An invasive and low virulent Edwardsiella tarda esrB mutant promising as live attenuated vaccine in aquaculture. Appl Microbiol Biotechnol. 2015;99(4):1765–1777.
  • Costa TR, Felisberto-Rodrigues C, Meir A, et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol. 2015;13(6):343–359.
  • Deng W, Marshall NC, Rowland JL, et al. Assembly, structure, function and regulation of type III secretion systems. Nat Rev Microbiol. 2017;15(6):323.
  • Cornelis GR. The type III secretion injectisome. Nat Rev Microbiol. 2006;4(11):811.
  • Dean P. Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol Rev. 2011;35(6):1100–1125.
  • Hu Y, Huang H, Cheng X, et al. A global survey of bacterial type III secretion systems and their effectors. Environ Microbiol. 2017;19(10):3879–3895.
  • Zheng J, Li N, Tan YP, et al. EscC is a chaperone for the Edwardsiella tarda type III secretion system putative translocon components EseB and EseD. Microbiology. 2007;153(6):1953–1962.
  • Wang B, Mo ZL, Mao YX, et al. Investigation of EscA as a chaperone for the Edwardsiella tarda type III secretion system putative translocon component EseC. Microbiology. 2009;155(4):1260–1271.
  • Yi J, Xiao SB, Zeng ZX, et al. EseE of Edwardsiella tarda augments the secretion of translocon protein EseC and the expression of escC-eseE operon. Infect Immun. 2016;84(8):2336–2344.
  • Zhang L, Jiang Z, Fang S, et al. Systematic identification of intracellular-translocated candidate effectors in Edwardsiella piscicida. Front Cell Infect Microbiol. 2018;8:37.
  • Liu Y, Zhao L, Yang M, et al. Transcriptomic dissection of the horizontally acquired response regulator EsrB reveals its global regulatory roles in the physiological adaptation and activation of T3SS and the cognate effector repertoire in Edwardsiella piscicida during infection toward turbot. Virulence. 2017;8(7):1355–1377.
  • Xu W, Gu Z, Zhang L, et al. Edwardsiella piscicida virulence effector trxlp promotes the NLRC4 inflammasome activation during infection. Microb Pathog. 2018;123:496–504.
  • Gallique M, Bouteiller M, Merieau A. The type VI secretion system: A dynamic system for bacterial communication? Front Microbiol. 2017;8:1454.
  • Russell AB, Hood RD, Bui NK, et al. Type VI secretion delivers bacteriolytic effectors to target cells. Nature. 2011;475(7356):343–347.
  • Hachani A, Wood TE, Filloux A. Type VI secretion and anti-host effectors. Curr Opin Microbiol. 2016;29:81–93.
  • Chen H, Yang D, Han F, et al. The bacterial T6SS effector EvpP prevents NLRP3 inflammasome activation by inhibiting the Ca2+-dependent MAPK-Jnk pathway. Cell Host Microbe. 2017;21(1):47–58.
  • Xiao J, Chen T, Liu B, et al. Edwardsiella tarda mutant disrupted in type III secretion system and chorismic acid synthesis and cured of a plasmid as a live attenuated vaccine in turbot. Fish Shellfish Immunol. 2013;35(3):632–641.
  • Figueira R, Watson KG, Holden DW, et al. Identification of Salmonella pathogenicity island-2 type III secretion system effectors involved in intramacrophage replication of S. enterica serovar Typhimurium: implications for rational vaccine design. MBio. 2013;4(2):e00065–13.
  • Arnold R, Jehl A, Rattei T. Targeting effectors: the molecular recognition of Type III secreted proteins. Microbes Infect. 2010;12(5):346–358.
  • Arnold R, Brandmaier S, Kleine F, et al. Sequence-based prediction of type III secreted proteins. PLoS Pathog. 2009;5(4):e1000376.
  • Wang Y, Sun M, Bao H, et al. Effective identification of bacterial type III secretion signals using joint element features. PLoS One. 2013;8(4):e59754.
  • Hobbs CK, Porter VL, Stow ML, et al. Computational approach to predict species-specific type III secretion system (T3SS) effectors using single and multiple genomes. BMC Genomics. 2016;17(1):1048.
  • Hou M, Chen R, Yang D, et al. Identification and functional characterization of EseH, a new effector of the type III secretion system of Edwardsiella piscicida. Cell Microbiol. 2017;19(1):e12638.
  • Wang Q, Yang M, Xiao J, et al. Genome sequence of the versatile fish pathogen Edwardsiella tarda provides insights into its adaptation to broad host ranges and intracellular niches. PLoS One. 2009;4(10):e7646.
  • Xu Y, Xu T, Wang B, et al. A mutation in rcsB, a gene encoding the core component of the Rcs cascade, enhances the virulence of Edwardsiella tarda. Res Microbiol. 2014;165(3):226–232.
  • Wu J, Liu G, Sun Y, et al. The role of regulator FucP in Edwardsiella tarda pathogenesis and the inflammatory cytokine response in tilapia. Fish Shellfish Immunol. 2018;80:624–630.
  • Xiao J, Wang Q, Liu Q, et al. Characterization of Edwardsiella tarda rpoS: effect on serum resistance, chondroitinase activity, biofilm formation, and autoinducer synthetases expression. Appl Microbiol Biotechnol. 2009;83(1):151–160.
  • Yin K, Guan Y, Ma R, et al. Critical role for a promoter discriminator in RpoS control of virulence in Edwardsiella piscicida. PLoS Pathog. 2018;14(8):e1007272.
  • Du HH, Zhou HZ, Tang P, et al. Global discovery of small RNAs in the fish pathogen Edwardsiella piscicida: key regulator of adversity and pathogenicity. Vet Res. 2018;49(1):120.
  • Wei L, Wu Y, Qiao H, et al. YebC controls virulence by activating T3SS gene expression in the pathogen Edwardsiella piscicida. FEMS Microbiol Lett. 2018;365:14.
  • Hu YH, Sun L. The global regulatory effect of Edwardsiella tarda Fur on iron acquisition, stress resistance, and host infection: A proteomics-based interpretation. J Proteomics. 2016;140:100–110.
  • Suomalainen LR, Tiirola M, Valtonen E. Chondroitin AC lyase activity is related to virulence of fish pathogenic Flavobacterium columnare. J Fish Dis. 2006;29(12):757–763.
  • Li MF, Sun L, Li J. Edwardsiella tarda evades serum killing by preventing complement activation via the alternative pathway. Fish Shellfish Immunol. 2015;43(2):325–329.
  • Zhou ZJ, Sun BG, Sun L. Edwardsiella tarda Sip1: A serum-induced zinc metalloprotease that is essential to serum resistance and host infection. Vet Microbiol. 2015;177(3–4):332–340.
  • Li M, Sun L. Edwardsiella tarda Sip2: A serum-induced protein that is essential to serum survival, acid resistance, intracellular replication, and host infection. Front Microbiol. 2018;9:1084.
  • Choe Y, Park J, Yu JE, et al. Edwardsiella piscicida lacking the cyclic AMP receptor protein (Crp) is avirulent and immunogenic in fish. Fish Shellfish Immunol. 2017;68:243–250.
  • Akgul A, Nho SW, Kalindamar S, et al. Universal stress proteins contribute Edwardsiella ictaluri virulence in catfish. Front Microbiol. 2018;9:2931.
  • Abdelhamed H, Lawrence ML, Karsi A. The role of TonB gene in Edwardsiella ictaluri virulence. Front Physiol. 2017;8:1066.
  • Gao D, Li Y, Zheng E, et al. Eha, a regulator of Edwardsiella tarda, required for resistance to oxidative stress in macrophages. FEMS Microbiol Lett. 2016;363:20.
  • Li MF, Wang C, Sun L. Edwardsiella tarda MliC, a lysozyme inhibitor that participates in pathogenesis in a manner that parallels Ivy. Infect Immun. 2015;83(2):583–590.
  • Hu YH, Zhou HZ, Jin QW, et al. The serine protease autotransporter Tsh contributes to the virulence of Edwardsiella tarda. Vet Microbiol. 2016;189:68–74.
  • Castro N, Osorio C, Buján N, et al. Insights into the virulence‐related genes of Edwardsiella tarda isolated from turbot in Europe: genetic homogeneity and evidence for vibrioferrin production. J Fish Dis. 2016;39(5):565–576.
  • Wang L, Xiao J, Cui S, et al. HU-induced polymorphous filamentation in fish pathogen Edwardsiella tarda leading to reduced invasion and virulence in zebrafish. Vet Microbiol. 2014;171(1–2):165–174.
  • Wang Y, Wang Q, Yang W, et al. Functional characterization of Edwardsiella tarda twin-arginine translocation system and its potential use as biological containment in live attenuated vaccine of marine fish. Appl Microbiol Biotechnol. 2013;97(8):3545–3557.
  • Li H, Zhu QF, Peng XX, et al. Interactome of E. piscicida and grouper liver proteins reveals strategies of bacterial infection and host immune response. Sci Rep. 2017;7:39824.
  • Peng B, Su YB, Li H, et al. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria. Cell Metab. 2015;21(2):249–261.
  • Ma W, Jia J, Huang X, et al. Stable isotope labelling by amino acids in cell culture (SILAC) applied to quantitative proteomics of Edwardsiella tarda ATCC 15947 under prolonged cold stress. Microb Pathog. 2018;125:12–19.