6,096
Views
105
CrossRef citations to date
0
Altmetric
Review Article

Galleria mellonella as a consolidated in vivo model hosts: New developments in antibacterial strategies and novel drug testing

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 527-541 | Received 26 Feb 2019, Accepted 14 May 2019, Published online: 29 May 2019

References

  • Clark RE, Squire LR. An animal model of recognition memory and medial temporal lobe amnesia: history and current issues. Neuropsychologia. 2010;48(8):2234–2244, ISSN 0028-3932.
  • O’Callaghan D, Vergunst A. Non-mammalian animal models to study infectious disease: worms or fly fishing?. Curr Opin Microbiol. 2010;13:79–85.
  • Fuchs BB, Mylonakis E. Using non-mammalian hosts to study fungal virulence and host defense. Curr Opin Microbiol. 2006;9:346–351.
  • Van den Driessche F, Vanhoutte B, Brackman G, et al. Evaluation of combination therapy for Burkholderia cenocepacia lung infection in different in vitro and in vivo models. PloS One. 2017;12:e0172723.
  • Pham LN, Dionne MS, Shirasu-Hiza M, et al. A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog. 2007;3:e26.
  • Tsai CJ-Y, Loh JMS, Proft T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence. 2016;7:214–229.
  • Panayidou S, Ioannidou E, Apidianakis Y. Human pathogenic bacteria, fungi, and viruses in Drosophila: disease modeling, lessons, and shortcomings. Virulence. 2014;5:253–269.
  • Brunke S, Quintin J, Kasper L, et al. Of mice, flies–and men? Comparing fungal infection models for large-scale screening efforts. Dis Model Mech. 2015;8:473–486.
  • Conery AL, Larkins‐Ford J, Ausubel FM, et al. High‐throughput screening for novel anti‐infectives using a C. elegans pathogenesis model. Curr Protoc Chem Biol. 2014;6:25–37.
  • Holt WV. Exploitation of non-mammalian model organisms in epigenetic research. In: Fazeli A, Holt W, editors. Periconception in physiology and medicine. Advances in experimental medicine and biology. Vol. 1014. Cham: Springer; 2017. p. 155–173.
  • Kavanagh K, Reeves EP. Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. FEMS Microbiol Rev. 2004;28:101–112.
  • Browne N, Heelan M, Kavanagh K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence. 2013;4:597–603.
  • Irazoqui JE, Urbach JM, Ausubel FM. Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat Rev Immunol. 2010;10:47.
  • Kavanagh K, Sheehan G. The use of galleria mellonella larvae to identify novel antimicrobial agents against fungal species of medical interest. J Fungi. 2018;4:113.
  • Freires IA, Sardi JDCO, de Castro RD, et al. Alternative animal and non-animal models for drug discovery and development: bonus or burden? Pharm Res. 2017;34:681–686.
  • Trevijano-Contador N, Zaragoza O. Immune response of galleria mellonella against human fungal pathogens. J Fungi. 2018;5:3.
  • Singulani JL, Scorzoni L, De Oliveira HC, et al. Applications of invertebrate animal models to dimorphic fungal infections. J Fungi. 2018;4:118.
  • Champion O, Titball R, Bates S. Standardization of G. mellonella larvae to provide reliable and reproducible results in the study of fungal pathogens. J Fungi. 2018;4:108.
  • Arvanitis M, Glavis-Bloom J, Mylonakis E. Invertebrate models of fungal infection. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2013;1832:1378–1383.
  • Lionakis MS. Drosophila and Galleria insect model hosts: new tools for the study of fungal virulence, pharmacology and immunology. Virulence. 2011;2:521–527.
  • Junqueira JC. Models hosts for the study of oral candidiasis. In: Mylonakis E, Ausubel F, Gilmore M, Casadevall A, editors. Recent advances on model hosts. Advances in experimental medicine and biology. Vol. 710. New York (NY): Springer; 2012. p. 95–105.
  • Mylonakis E. Galleria mellonella and the study of fungal pathogenesis: making the case for another genetically tractable model host. Mycopathologia. 2008;165:1–3.
  • London R, Orozco BS, Mylonakis E. The pursuit of cryptococcal pathogenesis: heterologous hosts and the study of cryptococcal host–pathogen interactions. FEMS Yeast Res. 2006;6:567–573.
  • Kwadha CA, Ong’amo GO, Ndegwa PN, et al. The biology and control of the greater wax moth, Galleria mellonella. Insects. 2017;8:61.
  • Nathan S. New to Galleria mellonella: modeling an ExPEC infection. Virulence. 2014;5:371–374.
  • Fleming ID, Krezalek MA, Belogortseva N, et al. Modeling Acinetobacter baumannii wound infections: the critical role of iron. J Trauma Acute Care Surg. 2017;82:557.
  • Yang H-F, Pan A-J, Hu L-F, et al. Galleria mellonella as an in vivo model for assessing the efficacy of antimicrobial agents against Enterobacter cloacae infection. J Microbiol Immunol Infect. 2017;50:55–61.
  • Desalermos A, Fuchs BB, Mylonakis E. Selecting an invertebrate model host for the study of fungal pathogenesis. PLoS Pathog. 2012;8:e1002451.
  • Andrea A, Krogfelt KA, Jenssen H. Methods and challenges of using the greater wax moth (Galleria mellonella) as a model organism in antimicrobial compound discovery. Microorganisms. 2019;7:85.
  • Jorjão AL, Oliveira LD, Scorzoni L, et al. From moths to caterpillars: ideal conditions for Galleria mellonella rearing for in vivo microbiological studies. Virulence. 2018;9:383–389.
  • Klass MR. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev. 1977;6:413–429.
  • Economos A, Lints F. Growth rate and life span in Drosophila. I. Methods and mechanisms of variation of growth rate. Mech Ageing Dev. 1984;27:1–13.
  • Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annu Rev Immunol. 2007;25:697–743.
  • Pereira T, de Barros P, Fugisaki L, et al. Recent advances in the use of galleria mellonella model to study immune responses against human pathogens. J Fungi. 2018;4:128.
  • Kim CH, Shin YP, Noh MY, et al. An insect multiligand recognition protein functions as an opsonin for the phagocytosis of microorganisms. J Biol Chem. 2010;285:25243–25250.
  • Wu G, Liu Y, Ding Y, et al. Ultrastructural and functional characterization of circulating hemocytes from Galleria mellonella larva: cell types and their role in the innate immunity. Tissue Cell. 2016;48:297–304.
  • Mak P, Zdybicka-Barabas A, Cytryńska M. A different repertoire of Galleria mellonella antimicrobial peptides in larvae challenged with bacteria and fungi. Dev Comp Immunol. 2010;34:1129–1136.
  • Wojda I. Immunity of the greater wax moth Galleria mellonella. Insect Sci. 2017;24:342–357.
  • Brown SE, Howard A, Kasprzak AB, et al. A peptidomics study reveals the impressive antimicrobial peptide arsenal of the wax moth Galleria mellonella. Insect Biochem Mol Biol. 2009;39:792–800.
  • Eisenhardt M, Schlupp P, Höfer F, et al. The therapeutic potential of the insect metalloproteinase inhibitor against infections caused by Pseudomonas aeruginosa. J Pharm Pharmacol. 2019;71:316–328.
  • ANWAr mohAmed A, Ansari MJ, Al-Ghamdi A, et al. Effect of larval nutrition on the development and mortality of Galleria mellonella (Lepidoptera: Pyralidae). Revista Colombiana de Entomología. 2014;40:49–54.
  • Banville N, Browne N, Kavanagh K. Effect of nutrient deprivation on the susceptibility of Galleria mellonella larvae to infection. Virulence. 2012;3:497–503.
  • Khalil MA, Moawad SS, Hefzy EM. In vivo activity of co-trimoxazole combined with colistin against Acinetobacter baumannii producing OXA-23 in a Galleria mellonella model. J Med Microbiol. 2018;68:52–59.
  • Wei W, Yang H, Hu L, et al. Activity of levofloxacin in combination with colistin against Acinetobacter baumannii: in vitro and in a Galleria mellonella model. J Microbiol Immunol Infect. 2017;50:821–830.
  • Chung J-H, Bhat A, Kim C-J, et al. Combination therapy with polymyxin B and netropsin against clinical isolates of multidrug-resistant Acinetobacter baumannii. Sci Rep. 2016;6:28168.
  • Yang H, Lv N, Hu L, et al. In vivo activity of vancomycin combined with colistin against multidrug-resistant strains of Acinetobacter baumannii in a Galleria mellonella model. Infect Dis (Auckl). 2016;48:189–194.
  • Cruz-Muñiz MY, López-Jacome LE, Hernández-Durán M, et al. Repurposing the anticancer drug mitomycin C for the treatment of persistent Acinetobacter baumannii infections. Int J Antimicrob Agents. 2017;49:88–92.
  • Regeimbal JM, Jacobs AC, Corey BW, et al. Personalized therapeutic cocktail of wild environmental phages rescues mice from A. baumannii wound infections. Antimicrob Agents Chemother. 2016 Sep;60(10):5806–5816.
  • Betts JW, Hornsey M, Wareham DW, et al. In vitro and in vivo activity of theaflavin–epicatechin combinations versus multidrug-resistant acinetobacter baumannii. Infect Dis Ther. 2017;6:435–442.
  • Papp-Wallace KM, Becka SA, Zeiser ET, et al. Overcoming an extremely drug resistant (XDR) pathogen: avibactam restores susceptibility to ceftazidime for Burkholderia cepacia complex isolates from cystic fibrosis patients. ACS Infect Dis. 2017;3:502–511.
  • Roszniowski B, Latka A, Maciejewska B, et al. The temperate Burkholderia phage AP3 of the Peduovirinae shows efficient antimicrobial activity against B. cenocepacia of the IIIA lineage. Appl Microbiol Biotechnol. 2017;101:1203–1216.
  • Mil‐Homens D, Ferreira‐Dias S, Fialho A. Fish oils against Burkholderia and Pseudomonas aeruginosa: in vitro efficacy and their therapeutic and prophylactic effects on infected Galleria mellonella larvae. J Appl Microbiol. 2016;120:1509–1519.
  • Naguib MM, Valvano MA. Vitamin E increases antimicrobial sensitivity by inhibiting bacterial lipocalin antibiotic binding. mSphere. 2018;3:e00564–00518.
  • Nale JY, Chutia M, Carr P, et al. ‘Get in early’; biofilm and wax moth (Galleria mellonella) models reveal new insights into the therapeutic potential of Clostridium difficile bacteriophages. Front Microbiol. 2016;7:1383.
  • Yang H, Chen G, Hu L, et al. Enhanced efficacy of imipenem-colistin combination therapy against multiple-drug-resistant Enterobacter cloacae: in vitro activity and a Galleria mellonella model. J Microbiol Immunol Infect. 2018;51:70–75.
  • Manohar P, Nachimuthu R, Lopes BS. The therapeutic potential of bacteriophages targeting gram-negative bacteria using Galleria mellonella infection model. BMC Microbiol. 2018;18:97.
  • Tharmalingam N, Port J, Castillo D, et al. Repurposing the anthelmintic drug niclosamide to combat Helicobacter pylori. Sci Rep. 2018;8:3701.
  • Jiang L, Greene MK, Insua JL, et al. Clearance of intracellular Klebsiella pneumoniae infection using gentamicin-loaded nanoparticles. J Control Release. 2018;279:316–325.
  • Majkowska-Skrobek G, Latka A, Berisio R, et al. Phage-borne depolymerases decrease Klebsiella pneumoniae resistance to innate defense mechanisms. Front Microbiol. 2018;9:2517.
  • Majkowska-Skrobek G, Łątka A, Berisio R, et al. Capsule-targeting depolymerase, derived from Klebsiella KP36 phage, as a tool for the development of anti-virulent strategy. Viruses. 2016;8:324.
  • D’andrea MM, Marmo P, De Angelis LH, et al. φBO1E, a newly discovered lytic bacteriophage targeting carbapenemase-producing Klebsiella pneumoniae of the pandemic Clonal Group 258 clade II lineage. Sci Rep. 2017;7:2614.
  • Aparecida Procópio Gomes L, Alves Figueiredo LM, Luiza do Rosário Palma A, et al. Punica granatum L. (Pomegranate) extract: in vivo study of antimicrobial activity against Porphyromonas gingivalis in Galleria mellonella model. Sci World J. 2016;2016:5, Article ID 8626987.
  • Zheng Z, Tharmalingam N, Liu Q, et al. Synergistic efficacy of aedes aegypti antimicrobial peptide cecropin A2 and tetracycline against pseudomonas aeruginosa. Antimicrob Agents Chemother. 2017;61:e00686–00617.
  • Ciociola T, Giovati L, Giovannelli A, et al. The activity of a mammalian proline-rich peptide against Gram-negative bacteria, including drug-resistant strains, relies on a nonmembranolytic mode of action. Infect Drug Resist. 2018;11:969.
  • D’Angelo F, Baldelli V, Halliday N, et al. Identification of FDA-approved drugs as antivirulence agents targeting the pqs quorum-sensing system of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2018;62:e01296–01218.
  • Forti F, Roach DR, Cafora M, et al. Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two animal models. Antimicrob Agents Chemother. 2018 May;62(6):e02573–e02617.
  • Olszak T, Shneider MM, Latka A, et al. The O-specific polysaccharide lyase from the phage LKA1 tailspike reduces Pseudomonas virulence. Sci Rep. 2017;7:16302.
  • Siriyong T, Voravuthikunchai SP, Coote PJ. Steroidal alkaloids and conessine from the medicinal plant Holarrhena antidysenterica restore antibiotic efficacy in a Galleria mellonella model of multidrug-resistant Pseudomonas aeruginosa infection. BMC Complement Altern Med. 2018;18:285.
  • Paškevičius Š, Starkevič U, Misiūnas A, et al. Plant-expressed pyocins for control of Pseudomonas aeruginosa. PloS One. 2017;12:e0185782.
  • Mirza ZR, Hasan T, Seidel V, et al. Geraniol as a novel antivirulence agent against bacillary dysentery-causing Shigella sonnei. Virulence. 2018;9:450–455.
  • Skinner K, Sandoe JA, Rajendran R, et al. Efficacy of rifampicin combination therapy for the treatment of enterococcal infections assessed in vivo using a Galleria mellonella infection model. Int J Antimicrob Agents. 2017;49:507–511.
  • Marini E, Magi G, Ferretti G, et al. Attenuation of Listeria monocytogenes virulence by Cannabis sativa L. essential oil. Front Cell Infect Microbiol. 2018 Aug 22;8:293.
  • Upadhyay A, Venkitanarayanan K. In vivo efficacy of trans-cinnamaldehyde, carvacrol, and thymol in attenuating Listeria monocytogenes infection in a Galleria mellonella model. J Nat Med. 2016;70:667–672.
  • Meir M, Bifani P, Barkan D. The addition of avibactam renders piperacillin an effective treatment for Mycobacterium abscessus infection in an in vivo model. Antimicrob Resist Infect Control. 2018;7:151.
  • Dong C-L, Li L-X, Cui Z-H, et al. Synergistic effect of pleuromutilins with other antimicrobial agents against staphylococcus aureus in vitro and in an experimental galleria mellonella model. Front Pharmacol. 2017;8:553.
  • Silva L, Hora G, Soares T, et al. Myricetin protects Galleria mellonella against Staphylococcus aureus infection and inhibits multiple virulence factors. Sci Rep. 2017;7:2823.
  • Ferro TA, Araújo JM, dos Santos Pinto BL, et al. Cinnamaldehyde inhibits staphylococcus aureus virulence factors and protects against infection in a galleria mellonella model. Front Microbiol. 2016;7:2052.
  • Mishra B, Wang X, Lushnikova T, et al. Antibacterial, antifungal, anticancer activities and structural bioinformatics analysis of six naturally occurring temporins. Peptides. 2018;106:9–20.
  • Johnston T, Hendricks GL, Shen S, et al. Raf-kinase inhibitor GW5074 shows antibacterial activity against methicillin-resistant Staphylococcus aureus and potentiates the activity of gentamicin. Future Med Chem. 2016;8:1941–1952.
  • Normark BH, Normark S. Evolution and spread of antibiotic resistance. J Intern Med. 2002;252:91–106.
  • Bonev BB, Brown NM. Bacterial resistance to antibiotics: from molecules to man. Hoboken (NJ): John Wiley & Sons; 2019.
  • Minrovic BM, Jung D, Melander RJ, et al. A new class of adjuvants enables lower dosing of colistin against acinetobacter baumannii. ACS Infect Dis. 2018;4(9):1368–1376.
  • Huggins WM, Minrovic BM, Corey BW, et al. 1, 2, 4-Triazolidine-3-thiones as narrow spectrum antibiotics against multidrug-resistant Acinetobacter baumannii. ACS Med Chem Lett. 2016;8:27–31.
  • Tran T, Chiem K, Jani S, et al. Identification of a small molecule inhibitor of the aminoglycoside 6ʹ-N-acetyltransferase type Ib [AAC (6ʹ)-Ib] using mixture-based combinatorial libraries. Int J Antimicrob Agents. 2018;51:752–761.
  • Jin WB, Xu C, Cheng Q, et al. Investigation of synergistic antimicrobial effects of the drug combinations of meropenem and 1, 2-benzisoselenazol-3 (2H)-one derivatives on carbapenem-resistant Enterobacteriaceae producing NDM-1. Eur J Med Chem. 2018;155:285–302. DOI:10.1016/j.ejmech.2018.06.007
  • Vellé A, Maguire R, Kavanagh K, et al. Steroid–auI–NHC complexes: synthesis and antibacterial activity. ChemMedChem. 2017;12:841–844.
  • Proschak A, Kramer J, Proschak E, et al. Bacterial zincophore [S, S]-ethylenediamine-N, N′-disuccinic acid is an effective inhibitor of MBLs. J Antimicrob Chemother. 2017;73:425–430.
  • Hubble VB, Hubbard BA, Minrovic BM, et al. Using small-molecule adjuvants to repurpose azithromycin for use against pseudomonas aeruginosa. ACS Infect Dis. 2019;5(1):141–151.
  • Jakobsen V, Viganor L, Blanco-Fernández A, et al. Tetrameric and polymeric silver complexes of the omeprazole scaffold; Synthesis, structure, in vitro and in vivo antimicrobial activities and DNA interaction. J Inorg Biochem. 2018;186:317–328.
  • Lyu Y, Yang X, Goswami S, et al. Amphiphilic tobramycin–lysine conjugates sensitize multidrug resistant gram-negative bacteria to rifampicin and minocycline. J Med Chem. 2017;60:3684–3702.
  • Gorityala BK, Guchhait G, Goswami S, et al. Hybrid antibiotic overcomes resistance in P. aeruginosa by enhancing outer membrane penetration and reducing efflux. J Med Chem. 2016;59:8441–8455.
  • Balasubramanian S, Skaf J, Holzgrabe U, et al. A new bioactive compound from the marine sponge-derived Streptomyces sp. SBT348 inhibits staphylococcal growth and biofilm formation. Front Microbiol. 2018;9:1473.
  • Tharmalingam N, Jayamani E, Rajamuthiah R, et al. Activity of a novel protonophore against methicillin-resistant Staphylococcus aureus. Future Med Chem. 2017;9:1401–1411.
  • Cascioferro S, Maggio B, Raffa D, et al. Synthesis and biofilm formation reduction of pyrazole-4-carboxamide derivatives in some Staphylococcus aureus strains. Eur J Med Chem. 2016;123:58–68.
  • Aneja B, Azam M, Alam S, et al. Natural product-based 1, 2, 3-triazole/sulfonate analogues as potential chemotherapeutic agents for bacterial infections. ACS Omega. 2018;3:6912–6930.
  • Dolan N, Gavin DP, Eshwika A, et al. Synthesis, antibacterial and anti-MRSA activity, in vivo toxicity and a structure–activity relationship study of a quinoline thiourea. Bioorg Med Chem Lett. 2016;26:630–635.
  • Lazarini JG, Sardi JDCO, Franchin M, et al. Bioprospection of Eugenia brasiliensis, a Brazilian native fruit, as a source of anti-inflammatory and antibiofilm compounds. Biomed Pharmacother. 2018;102:132–139.
  • Cruz L, Lopes L, de Camargo Ribeiro F, et al. Anti-candida albicans activity of thiazolylhydrazone derivatives in invertebrate and murine models. J Fungi. 2018;4:134.
  • Lange A, Beier S, Huson DH, et al. Genome sequence of Galleria mellonella (greater wax moth). Genome Announc. 2018;6:e01220–01217.
  • Heitmueller M, Billion A, Dobrindt U, et al. Epigenetic mechanisms regulate innate immunity against uropathogenic and commensal-like Escherichia coli in the surrogate insect model Galleria mellonella. Infect Immun. 2017 Sep;85(10):e00336–e00417.
  • Mukherjee K, Vilcinskas A. Development and immunity-related microRNAs of the lepidopteran model host Galleria mellonella. BMC Genomics. 2014;15:705.
  • Lange A, Schäfer A, Bender A, et al. Galleria mellonella: a novel invertebrate model to distinguish intestinal symbionts from pathobionts. Front Immunol. 2018 Sep;9:2114. PubMed PMID: 30283451; PubMed Central PMCID: PMC6156133.
  • Sheehan G, Kavanagh K. Proteomic analysis of the responses of candida albicans during infection of galleria mellonella larvae. J Fungi. 2019;5:7.
  • Mukherjee K, Vilcinskas A. The entomopathogenic fungus Metarhizium robertsii communicates with the insect host Galleria mellonella during infection. Virulence. 2018;9:402–413.
  • Loh JM, Adenwalla N, Wiles S, et al. Galleria mellonella larvae as an infection model for group A streptococcus. Virulence. 2013;4:419–428.
  • Rossoni RD, Fuchs BB, de Barros PP, et al. Lactobacillus paracasei modulates the immune system of Galleria mellonella and protects against Candida albicans infection. PloS One. 2017;12:e0173332.
  • de Melo NR, Abdrahman A, Greig C, et al. Myriocin significantly increases the mortality of a non-mammalian model host during Candida pathogenesis. PLoS One. 2013;8:e78905.
  • Thelaus J, Lundmark E, Lindgren P, et al. Galleria mellonella reveals niche differences between highly pathogenic and closely related strains of Francisella spp. Front Cell Infect Microbiol. 2018Jun 5;8:188. PubMed PMID: 29922601; PubMed Central PMCID: PMC5996057.
  • Wagley S, Borne R, Harrison J, et al. Galleria mellonella as an infection model to investigate virulence of Vibrio parahaemolyticus. Virulence. 2018;9:197–207.
  • Blandino G, Fazio D, Di Marco R. Probiotics: overview of microbiological and immunological characteristics. Expert Rev Anti Infect Ther. 2008;6:497–508.
  • Sá NP, Lima CM, Dos Santos A, et al. A phenylthiazole derivative demonstrates efficacy on treatment of the cryptococcosis & candidiasis in animal models. Future Sci OA. 2018;4:FSO305–FSO305.
  • Rossoni RD, Barbosa JO, Vilela SFG, et al. Competitive interactions between C. albicans, C. glabrata and C. krusei during biofilm formation and development of experimental candidiasis. PLoS One. 2015;10:e0131700.