2,576
Views
8
CrossRef citations to date
0
Altmetric
Special issue on Endemic Mycoses

Sensing the heat and the host: Virulence determinants of Histoplasma capsulatum

ORCID Icon &
Pages 793-800 | Received 09 Apr 2019, Accepted 28 Aug 2019, Published online: 27 Sep 2019

References

  • Bahr NC, Antinori S, Wheat LJ, et al. Histoplasmosis infections worldwide: thinking outside of the Ohio River valley. Curr Trop Med Rep. 2015;2:70–80.
  • Brown GD, Denning DW, Gow NAR, et al. Hidden killers: human fungal infections. Sci Transl Med. 2012;4:165rv113.
  • Retallack DM, Woods JP. Molecular epidemiology, pathogenesis, and genetics of the dimorphic fungus Histoplasma capsulatum. Microbes Infect. 1999;1:817–825.
  • Bonifaz A, Vazquez-Gonzalez D, Perusquia-Ortiz AM. Endemic systemic mycoses: coccidioidomycosis, histoplasmosis, paracoccidioidomycosis and blastomycosis. J Dtsch Dermatol Ges. 2011;9:705–714; quiz 715.
  • Klein BS, Tebbets B. Dimorphism and virulence in fungi. Curr Opin Microbiol. 2007;10:314–319.
  • Kasuga T, White TJ, Koenig G, et al. Phylogeography of the fungal pathogen Histoplasma capsulatum. Mol Ecol. 2003;12:3383–3401.
  • Maxwell CS, Sepulveda VE, Turissini DA, et al. Recent admixture between species of the fungal pathogen Histoplasma. Evol Lett. 2018;2:210–220.
  • Sepulveda VE, Marquez R, Turissini DA, et al. Genome sequences reveal cryptic speciation in the Human Pathogen Histoplasma capsulatum. MBio. 2017;8.
  • Teixeira Mde M, Patané JSL, Taylor ML, et al. Worldwide phylogenetic distributions and population dynamics of the Genus Histoplasma. PLoS Negl Trop Dis. 2016;10:e0004732.
  • Maresca B, Medoff G, Schlessinger D, et al. Regulation of dimorphism in the pathogenic fungus Histoplasma capsulatum. Nature. 1977;266:447–448.
  • Pine L, Webster RE. Conversion in strains of Histoplasma capsulatum. J Bacteriol. 1962;83:149–157.
  • Sacco M, Maresca B, Kumar BV, et al. Temperature- and cyclic nucleotide-induced phase transitions of Histoplasma capsulatum. J Bacteriol. 1981;146:117–120.
  • Eissenberg LG, Goldman WE. Histoplasma variation and adaptive strategies for parasitism: new perspectives on histoplasmosis. Clin Microbiol Rev. 1991;4:411–421.
  • Medoff G, Maresca B, Lambowitz AM, et al. Correlation between pathogenicity and temperature sensitivity in different strains of Histoplasma capsulatum. J Clin Invest. 1986;78:1638–1647.
  • Inglis DO, Voorhies M, Hocking Murray DR, et al. Comparative transcriptomics of infectious spores from the fungal pathogen Histoplasma capsulatum reveals a core set of transcripts that specify infectious and pathogenic states. Eukaryot Cell. 2013;12:828–852.
  • Inglis DO, Berkes CA, Hocking Murray DR, et al. Conidia but not yeast cells of the fungal pathogen Histoplasma capsulatum trigger a type I interferon innate immune response in murine macrophages. Infect Immun. 2010;78:3871–3882.
  • Campbell CC, Berliner MD. Virulence differences in mice of type A and B Histoplasma capsulatum yeasts grown in continuous light and total darkness. Infect Immun. 1973;8:677–678.
  • Maresca B, Lambowitz AM, Kumar VB, et al. Role of cysteine in regulating morphogenesis and mitochondrial activity in the dimorphic fungus Histoplasma capsulatum. Proc Natl Acad Sci U S A. 1981;78:4596–4600.
  • Di Lallo G, Gargano S, Maresca B. The Histoplasma capsulatum cdc2 gene is transcriptionally regulated during the morphologic transition. Gene. 1994;140:51–57.
  • Harris GS, Keath EJ, Medoff J. Expression of alpha- and beta-tubulin genes during dimorphic-phase transitions of Histoplasma capsulatum. Mol Cell Biol. 1989;9:2042–2049.
  • Batanghari JW, Goldman WE. Calcium dependence and binding in cultures of Histoplasma capsulatum. Infect Immun. 1997;65:5257–5261.
  • Keath EJ, Painter AA, Kobayashi GS, et al. Variable expression of a yeast-phase-specific gene in Histoplasma capsulatum strains differing in thermotolerance and virulence. Infect Immun. 1989;57:1384–1390.
  • Patel JB, Batanghari JW, Goldman WE. Probing the yeast phase-specific expression of the CBP1 gene in Histoplasma capsulatum. J Bacteriol. 1998;180:1786–1792.
  • Beyhan S, Gutierrez M, Voorhies M, et al. A temperature-responsive network links cell shape and virulence traits in a primary fungal pathogen. PLoS Biol. 2013;11:e1001614.
  • Edwards JA, Pereira DM, Amaral JD, et al. Histoplasma yeast and mycelial transcriptomes reveal pathogenic-phase and lineage-specific gene expression profiles. BMC Genomics. 2013;14:695.
  • Gilmore SA, Voorhies M, Gebhart D, et al. Genome-wide reprogramming of transcript architecture by temperature specifies the developmental states of the Human Pathogen Histoplasma. PLoS Genet. 2015;11:e1005395.
  • Hwang L, Hocking-Murray D, Bahrami AK, et al. Identifying phase-specific genes in the fungal pathogen Histoplasma capsulatum using a genomic shotgun microarray. Mol Biol Cell. 2003;14:2314–2326.
  • Nguyen VQ, Sil A. Temperature-induced switch to the pathogenic yeast form of Histoplasma capsulatum requires Ryp1, a conserved transcriptional regulator. Proc Natl Acad Sci U S A. 2008;105:4880–4885.
  • Webster RH, Sil A. Conserved factors Ryp2 and Ryp3 control cell morphology and infectious spore formation in the fungal pathogen Histoplasma capsulatum. Proc Natl Acad Sci U S A. 2008;105:14573–14578.
  • Srikantha T, Borneman AR, Daniels KJ, et al. TOS9 regulates white-opaque switching in Candida albicans. Eukaryot Cell. 2006;5:1674–1687.
  • Zordan RE, Miller MG, Galgoczy DJ, et al. Interlocking transcriptional feedback loops control white-opaque switching in Candida albicans. PLoS Biol. 2007;5:e256.
  • Bayram O, Braus GH. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev. 2012;36:1–24.
  • Nemecek JC, Wuthrich M, Klein BS. Global control of dimorphism and virulence in fungi. Science. 2006;312:583–588.
  • Laskowski-Peak MC, Calvo AM, Rohrssen J, et al. VEA1 is required for cleistothecial formation and virulence in Histoplasma capsulatum. Fungal Genet Biol. 2012;49:838–846.
  • Porta A, Maresca B. Host response and Histoplasma capsulatum/macrophage molecular interactions. Med Mycol. 2000;38:399–406.
  • Deepe GS Jr., Gibbons RS, Smulian AG. Histoplasma capsulatum manifests preferential invasion of phagocytic subpopulations in murine lungs. J Leukoc Biol. 2008;84:669–678.
  • Plato A, Hardison SE, Brown GD. Pattern recognition receptors in antifungal immunity. Semin Immunopathol. 2015;37:97–106.
  • Edwards JA, Alore EA, Rappleye CA. The yeast-phase virulence requirement for α-glucan synthase differs among Histoplasma capsulatum chemotypes. Eukaryot Cell. 2011;10:87–97.
  • Rappleye CA, Eissenberg LG, Goldman WE. Histoplasma capsulatum alpha-(1,3)-glucan blocks innate immune recognition by the beta-glucan receptor. Proc Natl Acad Sci U S A. 2007;104:1366–1370.
  • Rappleye CA, Engle JT, Goldman WE. RNA interference in Histoplasma capsulatum demonstrates a role for alpha-(1,3)-glucan in virulence. Mol Microbiol. 2004;53:153–165.
  • Marion CL, Rappleye CA, Engle JT, et al. An alpha-(1,4)-amylase is essential for alpha-(1,3)-glucan production and virulence in Histoplasma capsulatum. Mol Microbiol. 2006;62:970–983.
  • Holbrook ED, Edwards JA, Youseff BH, et al. Definition of the extracellular proteome of pathogenic-phase Histoplasma capsulatum. J Proteome Res. 2011;10:1929–1943.
  • Garfoot AL, Dearing KL, VanSchoiack AD, et al. Eng1 and Exg8 Are the major beta-glucanases secreted by the Fungal Pathogen Histoplasma capsulatum. J Biol Chem. 2017;292:4801–4810.
  • Garfoot AL, Shen Q, Wuthrich M, et al. The Eng1 beta-glucanase enhances Histoplasma virulence by reducing beta-Glucan Exposure. MBio. 2016;7:e01388–01315.
  • DeLeo FR, Allen LA, Apicella M, et al. NADPH oxidase activation and assembly during phagocytosis. J Immunol. 1999;163:6732–6740.
  • Eissenberg LG, Goldman WE. Histoplasma capsulatum fails to trigger release of superoxide from macrophages. Infect Immun. 1987;55:29–34.
  • Wolf JE, Kerchberger V, Kobayashi GS, et al. Modulation of the macrophage oxidative burst by Histoplasma capsulatum. J Immunol. 1987;138:582–586.
  • Youseff BH, Holbrook ED, Smolnycki KA, et al. Extracellular superoxide dismutase protects Histoplasma yeast cells from host-derived oxidative stress. PLoS Pathog. 2012;8:e1002713.
  • Kurita N, Brummer E, Yoshida S, et al. Antifungal activity of murine polymorphonuclear neutrophils against Histoplasma capsulatum. J Med Vet Mycol. 1991;29:133–143.
  • Kurita N, Terao K, Brummer E, et al. Resistance of Histoplasma capsulatum to killing by human neutrophils. Evasion of oxidative burst and lysosomal-fusion products. Mycopathologia. 1991;115:207–213.
  • Schnur RA, Newman SL. The respiratory burst response to Histoplasma capsulatum by human neutrophils. Evidence for intracellular trapping of superoxide anion. J Immunol. 1990;144:4765–4772.
  • Wolf JE, Massof SE, Sherwin JR, et al. Inhibition of murine macrophage protein kinase C activity by nonviable Histoplasma capsulatum. Infect Immun. 1992;60:2683–2687.
  • Fang FC. Antimicrobial actions of reactive oxygen species. MBio. 2011;2.
  • Johnson CH, Klotz MG, York JL, et al. Redundancy, phylogeny and differential expression of Histoplasma capsulatum catalases. Microbiology. 2002;148:1129–1142.
  • Holbrook ED, Smolnycki KA, Youseff BH, et al. Redundant catalases detoxify phagocyte reactive oxygen and facilitate Histoplasma capsulatum pathogenesis. Infect Immun. 2013;81:2334–2346.
  • Lane TE, Wu-Hsieh BA, Howard DH. Iron limitation and the gamma interferon-mediated antihistoplasma state of murine macrophages. Infect Immun. 1991;59:2274–2278.
  • Howard DH. Acquisition, transport, and storage of iron by pathogenic fungi. Clin Microbiol Rev. 1999;12:394–404.
  • Woods JP. Revisiting old friends: developments in understanding Histoplasma capsulatum pathogenesis. J Microbiol. 2016;54:265–276.
  • Burt WR, Underwood AL, Appleton GL. Hydroxamic acid from Histoplasma capsulatum that displays growth factor activity. Appl Environ Microbiol. 1981;42:560–563.
  • Howard DH, Rafie R, Tiwari A, et al. Hydroxamate siderophores of Histoplasma capsulatum. Infect Immun. 2000;68:2338–2343.
  • Hilty J, George Smulian A, Newman SL. Histoplasma capsulatum utilizes siderophores for intracellular iron acquisition in macrophages. Med Mycol. 2011;49:633–642.
  • Hwang LH, Mayfield JA, Rine J, et al. Histoplasma requires SID1, a member of an iron-regulated siderophore gene cluster, for host colonization. PLoS Pathog. 2008;4:e1000044.
  • Lin JS, Wu-Hsieh BA. Functional T cells in primary immune response to histoplasmosis. Int Immunol. 2004;16:1663–1673.
  • Hilty J, Smulian AG, Newman SL. The Histoplasma capsulatum vacuolar ATPase is required for iron homeostasis, intracellular replication in macrophages and virulence in a murine model of histoplasmosis. Mol Microbiol. 2008;70:127–139.
  • Zarnowski R, Cooper KG, Brunold LS, et al. Histoplasma capsulatum secreted gamma-glutamyltransferase reduces iron by generating an efficient ferric reductant. Mol Microbiol. 2008;70:352–368.
  • Winters MS, Chan Q, Caruso JA, et al. Metallomic analysis of macrophages infected with Histoplasma capsulatum reveals a fundamental role for zinc in host defenses. J Infect Dis. 2010;202:1136–1145.
  • Subramanian Vignesh K, Landero Figueroa JA, Porollo A, et al. Granulocyte macrophage-colony stimulating factor induced Zn sequestration enhances macrophage superoxide and limits intracellular pathogen survival. Immunity. 2013;39:697–710.
  • Dade J, DuBois JC, Pasula R, et al. HcZrt2, a zinc responsive gene, is indispensable for the survival of Histoplasma capsulatum in vivo. Med Mycol. 2016;54:865–875.
  • Shen Q, Beucler MJ, Ray SC, et al. Macrophage activation by IFN-gamma triggers restriction of phagosomal copper from intracellular pathogens. PLoS Pathog. 2018;14:e1007444.
  • Garfoot AL, Zemska O, Rappleye CA. Histoplasma capsulatum depends on de novo vitamin biosynthesis for intraphagosomal proliferation. Infect Immun. 2014;82:393–404.
  • Batanghari JW, Deepe GS Jr., Di Cera E, et al. Histoplasma acquisition of calcium and expression of CBP1 during intracellular parasitism. Mol Microbiol. 1998;27:531–539.
  • Batanghari JW, Dependence C. Binding in Cultures of Histoplasma capsulatum. Infect Immun. 1997;65:5257–5261.
  • Sebghati TS, Engle JT, Goldman WE. Intracellular parasitism by Histoplasma capsulatum: fungal virulence and calcium dependence. Science. 2000;290:1368–1372.
  • Isaac DT, Berkes CA, English BC, et al. Macrophage cell death and transcriptional response are actively triggered by the fungal virulence factor Cbp1 during H. capsulatum infection. Mol Microbiol. 2015;98:910–929.
  • English BC, Van Prooyen N, Ord T, et al. The transcription factor CHOP, an effector of the integrated stress response, is required for host sensitivity to the fungal intracellular pathogen Histoplasma capsulatum. PLoS Pathog. 2017;13:e1006589.
  • Eissenberg LG, Goldman WE, Schlesinger PH. Histoplasma capsulatum modulates the acidification of phagolysosomes. J Exp Med. 1993;177:1605–1611.
  • Strasser JE, Newman SL, Ciraolo GM, et al. Regulation of the macrophage vacuolar ATPase and phagosome-lysosome fusion by Histoplasma capsulatum. J Immunol. 1999;162:6148–6154.
  • Albuquerque PC, Nakayasu ES, Rodrigues ML, et al. Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes. Cell Microbiol. 2008;10:1695–1710.
  • Alves LR, Peres Da Silva R, Sanchez DA, et al. Extracellular Vesicle-Mediated RNA Release in Histoplasma capsulatum. mSphere. 2019;4.