3,012
Views
7
CrossRef citations to date
0
Altmetric
Special issue on Fungal Infections

Fungal infection strategies

References

  • Brown GD, Denning DW, Gow NA, et al. Hidden killers: human fungal infections. Sci Transl Med. 2012;4:165rv13.
  • Wheeler ML, Limon JJ, Underhill DM. Immunity to commensal fungi: detente and disease. Annu Rev Pathol. 2017;12:359–385.
  • Köhler JR, Hube B, Puccia R, et al. Fungi that infect humans. Microbiol Spectr. 2017;5:3.
  • Hube B, Hay R, Brasch J, et al. Dermatomycoses and inflammation: the adaptive balance between growth, damage, and survival. J Mycol Med. 2015;25:e44–58.
  • Gräser Y, Monod M, Bouchara JP, et al. New insights in dermatophyte research. Med Mycol. 2018;56:2–9.
  • Lackner M, Obermair J, Naschberger V, et al. Cryptic species of Aspergillus section Terrei display essential physiological features to cause infection and are similar in their virulence potential in Galleria mellonella. Virulence. 2019;10:542–554.
  • Casadevall A, Fu MS, Guimaraes AJ, et al. The ‘Amoeboid predator-fungal animal virulence’ hypothesis. J Fungi (Basel). 2019;5:10.
  • Aimanianda V, Bayry J, Bozza S, et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature. 2009;460:1117–1121.
  • Hillmann F, Novohradska S, Mattern DJ, et al. Virulence determinants of the human pathogenic fungus Aspergillus fumigatus protect against soil amoeba predation. Environ Microbiol. 2015;17:2858–2869.
  • Latge JP, Beauvais A, Chamilos G. The cell wall of the human fungal pathogen Aspergillus fumigatus: biosynthesis, organization, immune response, and virulence. Annu Rev Microbiol. 2017;71:99–116.
  • Speth C, Rambach G, Lass-Flörl C, et al. Galactosaminogalactan (GAG) and its multiple roles in Aspergillus pathogenesis. Virulence. 2019;10:976–983.
  • Dambuza IM, Brown GD. C-type lectins in immunity: recent developments. Curr Opin Immunol. 2015;32:21–27.
  • Steger M, Bermejo-Jambrina M, Yordanov T, et al. Beta-1,3-glucan-lacking Aspergillus fumigatus mediates an efficient antifungal immune response by activating complement and dendritic cells. Virulence. 2018;10:957–969.
  • Casadevall A, Steenbergen JN, Nosanchuk JD. ‘Ready made’ virulence and ‘dual use’ virulence factors in pathogenic environmental fungi–the Cryptococcus neoformans paradigm. Curr Opin Microbiol. 2003;6:332–337.
  • Zaragoza O. Basic principles of the virulence of Cryptococcus. Virulence. 2019;10:490–501.
  • Trevijano-Contador N, Rueda C, Zaragoza O. Fungal morphogenetic changes inside the mammalian host. Semin Cell Dev Biol. 2016;57:100–109.
  • Kirchhoff L, Olsowski M, Rath PM, et al. Exophiala dermatitidis: Key issues of an opportunistic fungal pathogen. Virulence. 2019;10:984–998.
  • Kirkland TN, Fierer J. Coccidioides immitis and posadasii; A review of their biology, genomics, pathogenesis, and host immunity. Virulence. 2018;9:1426–1435.
  • Kollath DR, Miller KJ, Barker BM. The mysterious desert dwellers: coccidioides immitis and Coccidioides posadasii, causative fungal agents of coccidioidomycosis. Virulence. 2019;10:222–233.
  • McManus BA, Coleman DC. Molecular epidemiology, phylogeny and evolution of Candida albicans. Infect Genet Evol. 2014;21:166–178.
  • Gabaldon T, Fairhead C. Genomes shed light on the secret life of Candida glabrata: not so asexual, not so commensal. Curr Genet. 2019;65:93–98.
  • Aliouat-Denis CM, Chabe M, Demanche C, et al. Pneumocystis species, co-evolution and pathogenic power. Infect Genet Evol. 2008;8:708–726.
  • Gigliotti F, Limper AH, Wright T. Pneumocystis. Cold Spring Harb Perspect Med. 2014;4:a019828.
  • Ene IV, Brunke S, Brown AJ, et al. Metabolism in fungal pathogenesis. Cold Spring Harb Perspect Med. 2014;4:a019695.
  • Brown AJ, Budge S, Kaloriti D, et al. Stress adaptation in a pathogenic fungus. J Exp Biol. 2014;217:144–155.
  • Noble SM, Gianetti BA, Witchley JN. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat Rev Microbiol. 2017;15:96–108.
  • Jacobsen ID, Wilson D, Wachtler B, et al. Candida albicans dimorphism as a therapeutic target. Expert Rev Anti Infect Ther. 2012;10:85–93.
  • Miramon P, Lorenz MC. A feast for Candida: metabolic plasticity confers an edge for virulence. PLoS Pathog. 2017;13:e1006144.
  • Sellam A, Whiteway M. Recent advances on Candida albicans biology and virulence. F1000Res. 2016;5:2582.
  • Chakraborty T, Toth R, Gacser A. Eicosanoid production by Candida parapsilosis and other pathogenic yeasts. Virulence. 2018;10:970–975.
  • Witchley JN, Penumetcha P, Abon NV, et al. Candida albicans morphogenesis programs control the balance between gut commensalism and invasive infection. Cell Host Microbe. 2019;25:432–43.e6.
  • Lo Presti L, Lanver D, Schweizer G, et al. Fungal effectors and plant susceptibility. Annu Rev Plant Biol. 2015;66:513–545.
  • Petit-Houdenot Y, Fudal I. Complex interactions between fungal avirulence genes and their corresponding plant resistance genes and consequences for disease resistance management. Front Plant Sci. 2017;8:1072.
  • Siscar-Lewin S, Hube B, Brunke S. Antivirulence and avirulence genes in human pathogenic fungi. Virulence 2019;10:935–947.