1,523
Views
7
CrossRef citations to date
0
Altmetric
Research Paper

Lethality of Brucella microti in a murine model of infection depends on the wbkE gene involved in O-polysaccharide synthesis

, ORCID Icon, , , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 868-878 | Received 03 Sep 2019, Accepted 13 Oct 2019, Published online: 02 Nov 2019

References

  • Pappas G, Papadimitriou P, Akritidis N, et al. The new global map of human brucellosis. Lancet Infect Dis. 2006;6:91–99.
  • Al Dahouk S, Köhler S, Occhialini A, et al. Brucella spp. of amphibians comprise genomically diverse motile strains competent for replication in macrophages and survival in mammalian hosts. Sci Rep. 2017;7:44420.
  • Aujoulat F, Roger F, Bourdier A, et al. From environment to man: genome evolution and adaptation of human opportunistic bacterial pathogens. Genes (Basel). 2012;3:191–232.
  • Damiano MA, Bastianelli D, Al Dahouk S, et al. Glutamate decarboxylase-dependent acid resistance in Brucella spp.: distribution and contribution to fitness under extremely acidic conditions. Appl Environ Microbiol. 2015;81:578–586.
  • Freddi L, Damiano MA, Chaloin L, et al. The glutaminase-dependent system confers extreme acid resistance to new species and atypical strains of Brucella. Front Microbiol. 2017;8:2236.
  • Pennacchietti E, D’Alonzo C, Freddi L, et al. The glutaminase-dependent acid resistance system: qualitative and quantitative assays and analysis of its distribution in enteric bacteria. Front Microbiol. 2018;9:2869.
  • Soler-Llorens PF, Quance CR, Lawhon SD, et al. A Brucella spp. isolate from a Pac-Man frog (Ceratophrys ornata) reveals characteristics departing from classical brucellae. Front Cell Infect Microbiol. 2016;6:116.
  • Scholz HC, Hubalek Z, Sedlacek I, et al. Brucella microti sp. nov., isolated from the common vole Microtus arvalis. Int J Syst Evol Microbiol. 2008;58:375–382.
  • Jay M, Girault G, Perrot L, et al. Phenotypic and molecular characterization of Brucella microti-like bacteria from a domestic marsh frog (Pelophylax ridibundus). Front Vet Sci. 2018;5:283.
  • Wattam AR, Inzana TJ, Williams KP, et al. Comparative genomics of early-diverging Brucella strains reveals a novel lipopolysaccharide biosynthesis pathway. MBio. 2012;3:e00246–12.
  • Jiménez de Bagüés MP, Ouahrani-Bettache S, Quintana JF, et al. The new species Brucella microti replicates in macrophages and causes death in murine models of infection. J Infect Dis. 2010;202:3–10.
  • Hanna N, Jiménez de Bagüés MP, Ouahrani-Bettache S, et al. The virB operon is essential for lethality of Brucella microti in the Balb/c murine model of infection. J Infect Dis. 2011;203:1129–1135.
  • Jiménez de Bagüés MP, Iturralde M, Arias MA, et al. The new strains Brucella inopinata BO1 and Brucella species 83-210 behave biologically like classic infectious Brucella species and cause death in murine models of infection. J Infect Dis. 2014;210:467–472.
  • Zygmunt MS, Jacques I, Bernardet N, et al. Lipopolysaccharide heterogeneity in the atypical group of novel emerging Brucella species. Clin Vaccine Immunol. 2012;19:1370–1373.
  • Haag AF, Myka KK, Arnold MF, et al. Importance of Lipopolysaccharide and Cyclic beta-1,2-Glucans in Brucella-Mammalian Infections. Int J Microbiol. 2010;2010:124509.
  • Lapaque N, Moriyon I, Moreno E, et al. Brucella lipopolysaccharide acts as a virulence factor. Curr Opin Microbiol. 2005;8:60–66.
  • Smith JA. Brucella Lipopolysaccharide and pathogenicity: the core of the matter. Virulence. 2018;9:379–382.
  • Moriyon I, Lopez-Goni I. Structure and properties of the outer membranes of Brucella abortus and Brucella melitensis. Int Microbiol. 1998;1:19–26.
  • Bundle DR, Cherwonogrodzky JW, Gidney MA, et al. Definition of Brucella A and M epitopes by monoclonal typing reagents and synthetic oligosaccharides. Infect Immun. 1989;57:2829–2836.
  • Zygmunt MS, Bundle DR, Ganesh NV, et al. Monoclonal antibody-defined specific C epitope of Brucella O-polysaccharide revisited. Clin Vaccine Immunol. 2015;22:979–982.
  • Hull NC, Schumaker BA. Comparisons of brucellosis between human and veterinary medicine. Infect Ecol Epidemiol. 2018;8:1500846.
  • Godfroid J, Scholz HC, Barbier T, et al. Brucellosis at the animal/ecosystem/human interface at the beginning of the 21st century. Prev Vet Med. 2011;102:118–131.
  • Porte F, Liautard JP, Köhler S. Early acidification of phagosomes containing Brucella suis is essential for intracellular survival in murine macrophages. Infect Immun. 1999;67:4041–4047.
  • Celli J, de Chastellier C, Franchini DM, et al. Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med. 2003;198:545–556.
  • Porte F, Naroeni A, Ouahrani-Bettache S, et al. Role of the Brucella suis lipopolysaccharide O antigen in phagosomal genesis and in inhibition of phagosome-lysosome fusion in murine macrophages. Infect Immun. 2003;71:1481–1490.
  • Starr T, Ng TW, Wehrly TD, et al. Brucella intracellular replication requires trafficking through the late endosomal/lysosomal compartment. Traffic. 2008;9:678–694.
  • Gonzalez D, Grillo MJ, De Miguel MJ, et al. Brucellosis vaccines: assessment of Brucella melitensis lipopolysaccharide rough mutants defective in core and O-polysaccharide synthesis and export. PLoS One. 2008;3:e2760.
  • Jiménez de Bagüés MP, Terraza A, Gross A, et al. Different responses of macrophages to smooth and rough Brucella spp.: relationship to virulence. Infect Immun. 2004;72:2429–2433.
  • Kovach ME, Phillips RW, Elzer PH, et al. 2nd and Peterson KM. pBBR1MCS: a broad-host-range cloning vector. Biotechniques. 1994;16:800–802.
  • Heckman KL, Pease LR. Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc. 2007;2:924–932.
  • Morton DB, Griffiths PH. Guidelines on the recognition of pain, distress and discomfort in experimental animals and an hypothesis for assessment. Vet Rec. 1985;116:431–436.
  • Al Dahouk S, Hofer E, Tomaso H, et al. Intraspecies biodiversity of the genetically homologous species Brucella microti. Appl Environ Microbiol. 2012;78:1534–1543.
  • Dorobantu LS, Gray MR. Application of atomic force microscopy in bacterial research. Scanning. 2010;32:74–96.
  • Necas D, Klapetek P. Gwyddion: an open-source software for SPM data analysis. Central European Journal of Physics. 2012;10:181–188.
  • Cardoso PG, Macedo GC, Azevedo V, et al. Brucella spp noncanonical LPS: structure, biosynthesis, and interaction with host immune system. Microb Cell Fact. 2006;5:13.
  • Conde-Alvarez R, Arce-Gorvel V, Iriarte M, et al. The lipopolysaccharide core of Brucella abortus acts as a shield against innate immunity recognition. PLoS Pathog. 2012;8:e1002675.
  • Henry BS. Dissociation in the Genus Brucella. J Infect Dis. 1933;53:374–402.
  • Ugalde JE, Czibener C, Feldman MF, et al. Identification and characterization of the Brucella abortus phosphoglucomutase gene: role of lipopolysaccharide in virulence and intracellular multiplication. Infect Immun. 2000;68:5716–5723.
  • Godfroid F, Taminiau B, Danese I, et al. Identification of the perosamine synthetase gene of Brucella melitensis 16M and involvement of lipopolysaccharide O side chain in Brucella survival in mice and in macrophages. Infect Immun. 1998;66:5485–5493.
  • Corbeil LB, Blau K, Inzana TJ, et al. Killing of Brucella abortus by bovine serum. Infect Immun. 1988;56:3251–3261.
  • Fernandez-Prada CM, Nikolich M, Vemulapalli R, et al. Deletion of wboA enhances activation of the lectin pathway of complement in Brucella abortus and Brucella melitensis. Infect Immun. 2001;69:4407–4416.
  • Turse JE, Pei J, Ficht TA. Lipopolysaccharide-deficient Brucella variants arise spontaneously during infection. Front Microbiol. 2011;2:54.
  • Vassen V, Valotteau C, Feuillie C, et al. Localized incorporation of outer membrane components in the pathogen Brucella abortus. Embo J. 2019;38:e100323.
  • Pei J, Ficht TA. Brucella abortus rough mutants are cytopathic for macrophages in culture. Infect Immun. 2004;72:440–450.
  • Pei J, Kahl-McDonagh M, Ficht TA. Brucella dissociation is essential for macrophage egress and bacterial dissemination. Front Cell Infect Microbiol. 2014;4:23.
  • Moriyon I, Grillo MJ, Monreal D, et al. Rough vaccines in animal brucellosis: structural and genetic basis and present status. Vet Res. 2004;35:1–38.