1,667
Views
8
CrossRef citations to date
0
Altmetric
Research paper

Antibacterial activity of a Tribolium castaneum defensin in an in vitro infection model of Streptococcus pneumoniae

, ORCID Icon, , , , , , , , ORCID Icon & ORCID Icon show all
Pages 902-909 | Received 15 Apr 2019, Accepted 25 Aug 2019, Published online: 02 Nov 2019

References

  • The European Committee on Antimicrobial Susceptibility Testing (EUCAST), Växjö, Sweden.EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance: version 2.0. 2017. http://www.eucast.org/resistance_mechanisms/
  • Dion CF, Ashurst JV. StatPearls: pneumonia, streptococcus pneumoniae. StatPearls, Treasure Island (FL); 2019.
  • European Centre for Disease Prevention and Control (2017). Data from the ECDC surveillance Atlas - antimicrobial resistance. Available from: https://ecdc.europa.eu/en/antimicrobial-resistance/surveillance-and-disease-data/data-ecdc; accessed October 2018
  • Cilloniz C, Martin-Loeches I, Garcia-Vidal C, et al. Microbial etiology of pneumonia: epidemiology, diagnosis and resistance patterns. Int J Mol Sci. 2016;17:2120.
  • Tonk M, Vilcinskas A. The medical potential of antimicrobial peptides from insects. CTMC. 2016;17:554–575.
  • Mylonakis E, Podsiadlowski L, Muhammed M, et al. Diversity, evolution and medical applications of insect antimicrobial peptides. Philos Trans R Soc Lond, B, Biol Sci. 2016;371:20150290.
  • Hancock REW. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet. 2001;1:156–164.
  • Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003;55:27–55.
  • Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 2011;29:464–472.
  • Hamoen LW, Wenzel M. Editorial: antimicrobial peptides - interaction with membrane lipids and proteins. Front Cell Dev Biol. 2017;5:4.
  • Muñoz M, Craske M, Severino P, et al. Antimicrobial peptide LL-37 participates in the transcriptional regulation of melanoma cells. J Cancer. 2016;7:2341–2345.
  • Altincicek B, Knorr E, Vilcinskas A. Beetle immunity: identification of immune-inducible genes from the model insect tribolium castaneum. Dev Comp Immunol. 2008;32:585–595.
  • Rajamuthiah R, Jayamani E, Conery AL, et al. A defensin from the model beetle tribolium castaneum acts synergistically with telavancin and daptomycin against multidrug resistant staphylococcus aureus. PLoS ONE. 2015;10:e0128576.
  • Griss K, Bertrams W, Sittka-Stark A, et al. MicroRNAs constitute a negative feedback loop in streptococcus pneumoniae-induced macrophage activation. J Infect Dis. 2016;214:288–299.
  • Tonk M, Pierrot C, Cabezas-Cruz A, et al. The drosophila melanogaster antimicrobial peptides Mtk-1 and Mtk-2 are active against the malarial parasite plasmodium falciparum. Parasitol Res. 2019;118:1993–1998.
  • Imöhl M, Reinert RR, van der Linden M. Antibiotic susceptibility rates of invasive pneumococci before and after the introduction of pneumococcal conjugate vaccination in Germany. Int J Med Microbiol. 2015;305:776–783.
  • Mensa B, Howell GL, Scott R, et al. Comparative mechanistic studies of brilacidin, daptomycin, and the antimicrobial peptide LL16. Antimicrob Agents Chemother. 2014;58:5136–5145.
  • Hirsch R, Wiesner J, Marker A, et al. Profiling antimicrobial peptides from the medical maggot lucilia sericata as potential antibiotics for MDR Gram-negative bacteria. J Antimicrob Chemother. 2019;74:96–107.
  • Jayamani E, Rajamuthiah R, Larkins-Ford J, et al. Insect-derived cecropins display activity against acinetobacter baumannii in a whole-animal high-throughput caenorhabditis elegans model. Antimicrob Agents Chemother. 2015;59:1728–1737.
  • Tonk M, Knorr E, Cabezas-Cruz A, et al. Tribolium castaneum defensins are primarily active against gram-positive bacteria. J Invertebr Pathol. 2015;132:208–215.
  • Pöppel A-K, Vogel H, Wiesner J, et al. Antimicrobial peptides expressed in medicinal maggots of the blow fly lucilia sericata show combinatorial activity against bacteria. Antimicrob Agents Chemother. 2015;59:2508–2514.
  • Cederlund A, Gudmundsson GH, Agerberth B. Antimicrobial peptides important in innate immunity. Febs J. 2011;278:3942–3951.
  • Shen W, He P, Xiao C, et al. From antimicrobial peptides to antimicrobial poly(α-amino acid)s. Adv Healthc Mater. 2018;7:e1800354.
  • Józefiak A, Engberg R. Insect proteins as a potential source of antimicrobial peptides in livestock production. A review. J Anim Feed Sci. 2017;26:87–99.
  • Le C-F, Gudimella R, Razali R, et al. Transcriptome analysis of streptococcus pneumoniae treated with the designed antimicrobial peptides, DM3. Sci Rep. 2016;6:26828.
  • Porter JD, Watson J, Roberts LR, et al. Identification of novel macrolides with antibacterial, anti-inflammatory and type I and III IFN-augmenting activity in airway epithelium. J Antimicrob Chemother. 2016;71:2767–2781.
  • Butler T. The Jarisch-Herxheimer reaction after antibiotic treatment of spirochetal infections: a review of recent cases and our understanding of pathogenesis. Am J Trop Med Hyg. 2017;96:46–52.
  • Koppe U, Suttorp N, Opitz B. Recognition of streptococcus pneumoniae by the innate immune system. Cell Microbiol. 2012;14:460–466.
  • Liu T, Zhang L, Joo D, et al. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. doi: 10.1038/sigtrans.2017.23.
  • de La Fuente-Núñez C, Mansour SC, Wang Z, et al. Anti-biofilm and immunomodulatory activities of peptides that inhibit biofilms formed by pathogens isolated from cystic fibrosis patients. Antibiotics (Basel). 2014;3:509–526.
  • Rahnamaeian M, Cytryńska M, Zdybicka-Barabas A, et al. The functional interaction between abaecin and pore-forming peptides indicates a general mechanism of antibacterial potentiation. Peptides. 2016;78:17–23.
  • Zheng Z, Tharmalingam N, Liu Q, et al. Synergistic efficacy of aedes aegypti antimicrobial peptide cecropin A2 and tetracycline against pseudomonas aeruginosa. Antimicrob Agents Chemother. 2017;61:e00686–00617.