2,897
Views
17
CrossRef citations to date
0
Altmetric
Special issue on Fungal Infections

Antivirulence and avirulence genes in human pathogenic fungi

, &
Pages 935-947 | Received 03 Apr 2019, Accepted 01 Oct 2019, Published online: 11 Nov 2019

References

  • Brown GD, Denning DW, Gow NA, et al. Hidden killers: human fungal infections. Sci Transl Med. 2012;4:165rv113.
  • Denning DW, Bromley MJ. Infectious disease. How to bolster the antifungal pipeline. Science. 2015;347:1414-1416.
  • Kohler JR, Hube B, Puccia R, et al. Fungi that infect humans. Microbiol Spectr. 2017;5.
  • Zaborin A, Smith D, Garfield K, et al. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness. MBio. 2014;5:e01361–01314.
  • Lott TJ, Fundyga RE, Kuykendall RJ, et al. The human commensal yeast, Candida albicans, has an ancient origin. Fungal Genet Biol. 2005;42:444–451.
  • Wrobel L, Whittington JK, Pujol C, et al. Molecular phylogenetic analysis of a geographically and temporally matched set of Candida albicans isolates from humans and nonmigratory wildlife in central Illinois. Eukaryot Cell. 2008;7:1475–1486.
  • Pande K, Chen C, Noble SM. Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism. Nat Genet. 2013;45:1088–1091.
  • Noble SM. Candida albicans specializations for iron homeostasis: from commensalism to virulence. Curr Opin Microbiol. 2013;16:708–715.
  • Brown AJ, Budge S, Kaloriti D, et al. Stress adaptation in a pathogenic fungus. J Exp Biol. 2014;217:144–155.
  • Vylkova S, Lorenz MC. Modulation of phagosomal pH by Candida albicans promotes hyphal morphogenesis and requires Stp2p, a regulator of amino acid transport. PLoS Pathog. 2014;10:e1003995.
  • Seider K, Heyken A, Luttich A, et al. Interaction of pathogenic yeasts with phagocytes: survival, persistence and escape. Curr Opin Microbiol. 2010;13:392–400.
  • Gerwien F, Skrahina V, Kasper L, et al. Metals in fungal virulence. FEMS Microbiol Rev. 2018;42.
  • Brunke S, Mogavero S, Kasper L, et al. Virulence factors in fungal pathogens of man. Curr Opin Microbiol. 2016;32:89–95.
  • Marcos CM, de Oliveira HC, de Melo WC, et al. Anti-immune strategies of pathogenic fungi. Front Cell Infect Microbiol. 2016;6:142.
  • Novohradska S, Ferling I, Hillmann F. Exploring virulence determinants of filamentous fungal pathogens through interactions with soil amoebae. Front Cell Infect Microbiol. 2017;7:497.
  • Bliven KA, Maurelli AT. Antivirulence genes: insights into pathogen evolution through gene loss. Infect Immun. 2012;80:4061–4070.
  • Maurelli AT. Black holes, antivirulence genes, and gene inactivation in the evolution of bacterial pathogens. FEMS Microbiol Lett. 2007;267:1–8.
  • Raymond SL, Holden DC, Mira JC, et al. Microbial recognition and danger signals in sepsis and trauma. Biochim Biophys Acta Mol Basis Dis. 2017;1863:2564–2573.
  • Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81:1–5.
  • Lo Presti L, Lanver D, Schweizer G, et al. Fungal effectors and plant susceptibility. Annu Rev Plant Biol. 2015;66:513–545.
  • Petit-Houdenot Y, Fudal I. Complex interactions between fungal avirulence genes and their corresponding plant resistance genes and consequences for disease resistance management. Front Plant Sci. 2017;8:1072.
  • Casadevall A, Pirofski LA. Host-pathogen interactions: basic concepts of microbial commensalism, colonization, infection, and disease. Infect Immun. 2000;68:6511–6518.
  • Casadevall A, Pirofski LA. Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect Immun. 1999;67:3703–3713.
  • Casadevall A, Pirofski L. Host-pathogen interactions: the attributes of virulence. J Infect Dis. 2001;184:337–344.
  • Rubartelli A, Lotze MT. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol. 2007;28:429–436.
  • Gabaldon T, Naranjo-Ortiz MA, Marcet-Houben M. Evolutionary genomics of yeast pathogens in the Saccharomycotina. FEMS Yeast Res. 2016;16:fow064.
  • Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P,Anderson MJ, et al. Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. Plos Genet. 2008;4:e1000046.
  • Moran GP, Coleman DC, Sullivan DJ. Comparative genomics and the evolution of pathogenicity in human pathogenic fungi. Eukaryot Cell. 2011;10:34–42.
  • Gabaldon T, Martin T, Marcet-Houben M, et al. Comparative genomics of emerging pathogens in the Candida glabrata clade. BMC Genomics. 2013;14:623.
  • Butler G, Rasmussen MD, Lin MF, et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature. 2009;459:657–662.
  • Sharpton TJ, Stajich JE, Rounsley SD, et al. Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res. 2009;19:1722–1731.
  • Braunsdorf C, Mailander-Sanchez D, Schaller M. Fungal sensing of host environment. Cell Microbiol. 2016;18:1188–1200.
  • Gyles C, Boerlin P. Horizontally transferred genetic elements and their role in pathogenesis of bacterial disease. Vet Pathol. 2014;51:328–340.
  • Moore PC, Lindsay JA. Genetic variation among hospital isolates of methicillin-sensitive Staphylococcus aureus: evidence for horizontal transfer of virulence genes. J Clin Microbiol. 2001;39:2760–2767.
  • Juhas M. Horizontal gene transfer in human pathogens. Crit Rev Microbiol. 2015;41:101–108.
  • Prunier AL, Schuch R, Fernandez RE, et al. Genetic structure of the nadA and nadB antivirulence loci in Shigella spp. J Bacteriol. 2007a;189:6482–6486.
  • Prunier AL, Schuch R, Fernandez RE, et al. nadA and nadB of Shigella flexneri 5a are antivirulence loci responsible for the synthesis of quinolinate, a small molecule inhibitor of Shigella pathogenicity. Microbiology. 2007b;153:2363–2372.
  • McNally A, Thomson NR, Reuter S, et al. ‘Add, stir and reduce’: Yersinia spp. as model bacteria for pathogen evolution. Nat Rev Microbiol. 2016;14:177–190.
  • Brown NA, Urban M, Hammond-Kosack KE. The trans-kingdom identification of negative regulators of pathogen hypervirulence. FEMS Microbiol Rev. 2016;40:19–40.
  • Roetzer A, Gabaldon T, Schuller C. From Saccharomyces cerevisiae to Candida glabrata in a few easy steps: important adaptations for an opportunistic pathogen. FEMS Microbiol Lett. 2011;314:1–9.
  • Dujon B, Sherman D, Fischer G, et al. Genome evolution in yeasts. Nature. 2004;430:35–44.
  • Dujon B. Yeast evolutionary genomics. Nat Rev Genet. 2010;11:512–524.
  • Ma B, Pan SJ, Zupancic ML, et al. Assimilation of NAD(+) precursors in Candida glabrata. Mol Microbiol. 2007;66:14–25.
  • Domergue R, Castano I, De Las Penas A, et al. Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science. 2005;308:866–870.
  • Orta-Zavalza E, Guerrero-Serrano G, Gutierrez-Escobedo G, et al. Local silencing controls the oxidative stress response and the multidrug resistance in Candida glabrata. Mol Microbiol. 2013;88:1135–1148.
  • Brunke S, Seider K, Fischer D, et al. One small step for a yeast–microevolution within macrophages renders Candida glabrata hypervirulent due to a single point mutation. PLoS Pathog. 2014;10:e1004478.
  • Guerrero A, Jain N, Wang X, et al. Cryptococcus neoformans variants generated by phenotypic switching differ in virulence through effects on macrophage activation. Infect Immun. 2010;78:1049–1057.
  • Jain N, Li L, Hsueh YP, et al. Loss of allergen 1 confers a hypervirulent phenotype that resembles mucoid switch variants of Cryptococcus neoformans. Infect Immun. 2009;77:128–140.
  • Arras SDM, Ormerod KL, Erpf PE, et al. Convergent microevolution of Cryptococcus neoformans hypervirulence in the laboratory and the clinic. Sci Rep. 2017;7:17918.
  • Cheng S, Clancy CJ, Zhang Z, et al. Uncoupling of oxidative phosphorylation enables Candida albicans to resist killing by phagocytes and persist in tissue. Cell Microbiol. 2007;9:492–501.
  • Ferrari S, Sanguinetti M, De Bernardis F, et al. Loss of mitochondrial functions associated with azole resistance in Candida glabrata results in enhanced virulence in mice. Antimicrob Agents Chemother. 2011;55:1852–1860.
  • Tsitsigiannis DI, Bok JW, Andes D, et al. Aspergillus cyclooxygenase-like enzymes are associated with prostaglandin production and virulence. Infect Immun. 2005a;73:4548–4559.
  • Tsitsigiannis DI, Kowieski TM, Zarnowski R, et al. Endogenous lipogenic regulators of spore balance in Aspergillus nidulans. Eukaryot Cell. 2004a;3:1398–1411.
  • Wang P, Cutler J, King J, et al. Mutation of the regulator of G protein signaling Crg1 increases virulence in Cryptococcus neoformans. Eukaryot Cell. 2004;3:1028–1035.
  • Bahnan W, Koussa J, Younes S, et al. Deletion of the Candida albicans PIR32 results in increased virulence, stress response, and upregulation of cell wall chitin deposition. Mycopathologia. 2012;174:107–119.
  • Plaine A, Walker L, Da Costa G, et al. Functional analysis of Candida albicans GPI-anchored proteins: roles in cell wall integrity and caspofungin sensitivity. Fungal Genet Biol. 2008;45:1404–1414.
  • Garcia-Effron G, Katiyar SK, Park S, et al. A naturally occurring proline-to-alanine amino acid change in Fks1p in Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis accounts for reduced echinocandin susceptibility. Antimicrob Agents Chemother. 2008;52:2305–2312.
  • Lenardon MD, Munro CA, Gow NA. Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol. 2010;13:416–423.
  • Zaragoza O, Blazquez MA, Gancedo C. Disruption of the Candida albicans TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity. J Bacteriol. 1998;180:3809–3815.
  • Martinez-Esparza M, Aguinaga A, Gonzalez-Parraga P, et al. Role of trehalose in resistance to macrophage killing: study with a tps1/tps1 trehalose-deficient mutant of Candida albicans. Clin Microbiol Infect. 2007;13:384–394.
  • Petzold EW, Himmelreich U, Mylonakis E, et al. Characterization and regulation of the trehalose synthesis pathway and its importance in the pathogenicity of Cryptococcus neoformans. Infect Immun. 2006;74:5877–5887.
  • Alvarez-Peral FJ, Zaragoza O, Pedreno Y, et al. Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. Microbiology. 2002;148:2599–2606.
  • Al-Bader N, Vanier G, Liu H, et al. Role of trehalose biosynthesis in Aspergillus fumigatus development, stress response, and virulence. Infect Immun. 2010;78:3007–3018.
  • Kerr SC, Fischer GJ, Sinha M, et al. FleA expression in Aspergillus fumigatus is recognized by fucosylated structures on mucins and macrophages to prevent lung infection. PLoS Pathog. 2016;12:e1005555.
  • Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet. 2010;11:539–548.
  • Brown JK, Tellier A. Plant-parasite coevolution: bridging the gap between genetics and ecology. Annu Rev Phytopathol. 2011;49:345–367.
  • de Jonge R, van Esse HP, Kombrink A, et al. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science. 2010;329:953–955.
  • Djamei A, Schipper K, Rabe F, et al. Metabolic priming by a secreted fungal effector. Nature. 2011;478:395–398.
  • White FF, Yang B, Johnson LB. Prospects for understanding avirulence gene function. Curr Opin Plant Biol. 2000;3:291–298.
  • Flor HH. Current status of the gene-for-gene concept. Ann Rev Phytopathol. 1971;9:275-296.
  • van Esse HP, Van’t Klooster JW, Bolton MD, et al. The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. Plant Cell. 2008;20:1948–1963.
  • Rooney HC, Van’t Klooster JW, van der Hoorn RA, et al. Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science. 2005;308:1783–1786.
  • Hacquard S, Kracher B, Maekawa T, et al. Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts. Proc Natl Acad Sci U S A. 2013;110:E2219–2228.
  • Sharma R, Mishra B, Runge F, et al. Gene loss rather than gene gain is associated with a host jump from monocots to dicots in the Smut Fungus Melanopsichium pennsylvanicum. Genome Biol Evol. 2014;6:2034–2049.
  • Wicker T, Oberhaensli S, Parlange F, et al. The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nat Genet. 2013;45:1092–1096.
  • Joly DL, Feau N, Tanguay P, et al. Comparative analysis of secreted protein evolution using expressed sequence tags from four poplar leaf rusts (Melampsora spp.). BMC Genomics. 2010;11:422.
  • Bliska JB, Casadevall A. Intracellular pathogenic bacteria and fungi–a case of convergent evolution? Nat Rev Microbiol. 2009;7:165–171.
  • Casadevall A. Evolution of intracellular pathogens. Annu Rev Microbiol. 2008;62:19–33.
  • Hube B. Fungal adaptation to the host environment. Curr Opin Microbiol. 2009;12:347–349.
  • Radosa S, Ferling I, Sprague JL, Westermann M,Hillmann F. The different morphologies of yeast and filamentous fungi trigger distinct killing and feeding mechanisms in a fungivorous amoeba. Environ Microbiol. 2019;21:1809–1820.
  • Polke M, Hube B, Jacobsen ID. Candida survival strategies. Adv Appl Microbiol. 2015;91:139–235.
  • van de Veerdonk FL, Gresnigt MS, Romani L, et al. Aspergillus fumigatus morphology and dynamic host interactions. Nat Rev Microbiol. 2017;15:661–674.
  • Behnsen J, Hartmann A, Schmaler J, et al. The opportunistic human pathogenic fungus Aspergillus fumigatus evades the host complement system. Infect Immun. 2008;76:820–827.
  • Luberto C, Martinez-Marino B, Taraskiewicz D, et al. Identification of App1 as a regulator of phagocytosis and virulence of Cryptococcus neoformans. J Clin Invest. 2003;112:1080–1094.
  • Meri T, Blom AM, Hartmann A, et al. The hyphal and yeast forms of Candida albicans bind the complement regulator C4b-binding protein. Infect Immun. 2004;72:6633–6641.
  • Zipfel PF, Hallstrom T, Riesbeck K. Human complement control and complement evasion by pathogenic microbes–tipping the balance. Mol Immunol. 2013;56:152–160.
  • Zipfel PF, Skerka C, Kupka D, et al. Immune escape of the human facultative pathogenic yeast Candida albicans: the many faces of the Candida Pra1 protein. Int J Med Microbiol. 2011;301:4.
  • Luo S, Poltermann S, Kunert A, et al. Immune evasion of the human pathogenic yeast Candida albicans: Pra1 is a Factor H, FHL-1 and plasminogen binding surface protein. Mol Immunol. 2009;47:541–550.
  • Lesiak-Markowicz I, Vogl G, Schwarzmuller T, et al. Candida albicans Hgt1p, a multifunctional evasion molecule: complement inhibitor, CR3 analogue, and human immunodeficiency virus-binding molecule. J Infect Dis. 2011;204:802–809.
  • Luo S, Hoffmann R, Skerka C, et al. Glycerol-3-phosphate dehydrogenase 2 is a novel factor H-, factor H-like protein 1-, and plasminogen-binding surface protein of Candida albicans. J Infect Dis. 2013;207:594–603.
  • Poltermann S, Kunert A, von der Heide M, et al. Gpm1p is a factor H-, FHL-1-, and plasminogen-binding surface protein of Candida albicans. J Biol Chem. 2007;282:37537–37544.
  • Behnsen J, Lessing F, Schindler S, et al. Secreted Aspergillus fumigatus protease Alp1 degrades human complement proteins C3, C4, and C5. Infect Immun. 2010;78:3585–3594.
  • Gropp K, Schild L, Schindler S, et al. The yeast Candida albicans evades human complement attack by secretion of aspartic proteases. Mol Immunol. 2009;47:465–475.
  • Rambach G, Dum D, Mohsenipour I, et al. Secretion of a fungal protease represents a complement evasion mechanism in cerebral aspergillosis. Mol Immunol. 2010;47:1438–1449.
  • Liu OW, Chun CD, Chow ED, et al. Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans. Cell. 2008;135:174–188.
  • Konig S, Pace S, Pein H, Heinekamp T, Kramer J,Romp E, et al. Gliotoxin from Aspergillus fumigatus abrogates leukotriene b4 formation through inhibition of leukotriene a4 hydrolase. Cell Chem Biol. 2019;26:524–534.
  • Stanzani M, Orciuolo E, Lewis R, et al. Aspergillus fumigatus suppresses the human cellular immune response via gliotoxin-mediated apoptosis of monocytes. Blood. 2005;105:2258–2265.
  • Mullbacher A, Waring P, Eichner RD. Identification of an agent in cultures of Aspergillus fumigatus displaying anti-phagocytic and immunomodulating activity in vitro. J Gen Microbiol. 1985;131:1251–1258.
  • Kwon-Chung KJ, Sugui JA. What do we know about the role of gliotoxin in the pathobiology of Aspergillus fumigatus? Med Mycol. 2009;47(Suppl 1):S97–103.
  • Naglik J, Albrecht A, Bader O,Hube B. Candida albicans proteinases and host/pathogen interactions. Cell Microbiol. 2004;6:915–926.
  • Naglik JR,Challacombe SJ. Hube b. Candida Albicans secreted aspartyl proteinases in Virulence and Pathogenesis. Microbiol Mol Biol Rev. 2003;67:400–428.
  • Meiller TF, Hube B, Schild L, et al. A novel immune evasion strategy of Candida albicans: proteolytic cleavage of a salivary antimicrobial peptide. PLoS One. 2009;4:e5039.
  • Pietrella D, Pandey N, Gabrielli E, Pericolini E, Perito S,Kasper L, et al. Secreted aspartic proteases of Candida albicans activate the nlrp3 inflammasome. Eur J Immunol. 2013;43:679–692.
  • Sentandreu M, Elorza MV, Sentandreu R,Fonzi WA. Cloning and characterization of PRA1, a gene encoding a novel pH-regulated antigen of Candida albicans. J Bacteriol. 1998;180:282–289.
  • Stappers MHT, Clark AE, Aimanianda V, et al. Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus. Nature. 2018;555:382–386.
  • Langfelder K, Streibel M, Jahn B, Haase G,Brakhage AA. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol. 2003;38:143–158.
  • Mayer FL, Wilson D, Jacobsen ID, et al. The novel Candida albicans transporter Dur31 Is a multi-stage pathogenicity factor. PLoS Pathog. 2012;8:e1002592.
  • Giraldo MC,Valent B. Filamentous plant pathogen effectors in action. Nat Rev Microbiol. 2013;11:800–814.
  • Sun JN, Solis NV, Phan QT, et al. Host cell invasion and virulence mediated by Candida albicans Ssa1. PLoS Pathog. 2010;6:e1001181.
  • Li XS, Reddy MS, Baev D, et al. Candida albicans Ssa1/2p is the cell envelope binding protein for human salivary histatin 5. J Biol Chem. 2003;278:28553–28561.
  • Vylkova S, Li XS, Berner JC, et al. Distinct antifungal mechanisms: beta-defensins require Candida albicans Ssa1 protein, while Trk1p mediates activity of cysteine-free cationic peptides. Antimicrob Agents Chemother. 2006;50:324–331.
  • Casadevall A,Pirofski LA. Microbiology: Ditch the term pathogen. Nature. 2014;516:165–166.
  • Moyes DL, Wilson D, Richardson JP, et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature. 2016;532:64–68.
  • Allert S, Forster TM, Svensson CM, Richardson JP, Pawlik T,Hebecker B, et al. Candida albicans-Induced epithelial damage mediates translocation through intestinal barriers. MBio. 2018;9.
  • Moyes DL, Runglall M, Murciano C, Shen C, Nayar D,Thavaraj S, et al. A biphasic innate immune mapk response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe. 2010;8:225-235.
  • Verma AH, Richardson JP, Zhou C, Coleman BM, Moyes DL,Ho J, et al. Oral epithelial cells orchestrate innate type 17 responses to Candida albicans through the virulence factor candidalysin. Sci Immunol. 2017;2.
  • Kasper L, Konig A, Koenig PA, et al. The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat Commun. 2018;9:4260.
  • Drummond RA, Swamydas M, Oikonomou V, Zhai B, Dambuza IM,Schaefer BC. CARD9(+) microglia promote antifungal immunity via il-1beta- and cxcl1-mediated neutrophil recruitment. Nat Immunol. 2019;20:559–570.
  • Richardson JP, Willems HME, Moyes DL, et al. Candidalysin drives epithelial signaling, neutrophil recruitment, and immunopathology at the vaginal mucosa. Infect Immun. 2017;86.
  • Montminy SW, Khan N, McGrath S, et al. Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat Immunol. 2006;7:1066–1073.