1,511
Views
6
CrossRef citations to date
0
Altmetric
Research Paper

MoFap7, a ribosome assembly factor, is required for fungal development and plant colonization of Magnaporthe oryzae

, , , ORCID Icon, ORCID Icon & ORCID Icon
Pages 1047-1063 | Received 05 Jun 2019, Accepted 31 Oct 2019, Published online: 09 Dec 2019

References

  • Wilson RA, Talbot NJ. Under pressure: investigating the biology of plant infection by magnaporthe oryzae. Nat Rev Microbiol. 2009;7:185–195.
  • Talbot NJ. On the trail of a cereal killer: exploring the biology of magnaporthe grisea. Annu Rev Microbiol. 2003;57:177–202.
  • Zhang H, Zheng X, Zhang Z. The magnaporthe grisea species complex and plant pathogenesis. Mol Plant Pathol. 2016;17:796–804.
  • Li G, Zhou X, Xu JR. Genetic control of infection-related development in magnaporthe oryzae. Curr Opin Microbiol. 2012;15:678–684.
  • Turra D, Segorbe D, Di Pietro A. Protein kinases in plant-pathogenic fungi: conserved regulators of infection. Annu Rev Phytopathol. 2014;52:267–288.
  • Zhu XM, Li L, Wu M, et al. Current opinions on autophagy in pathogenicity of fungi. Virulence. 2018;10:481-489.
  • Ortoneda M, Guarro J, Madrid MP, et al. Fusarium oxysporum as a multihost model for the genetic dissection of fungal virulence in plants and mammals. Infect Immun. 2004;72:1760–1766.
  • Jiang C, Zhang X, Liu H, et al. Mitogen-activated protein kinase signaling in plant pathogenic fungi. PLoS Pathog. 2018;14:e1006875.
  • Li G, Zhang X, Tian H, et al. MST50 is involved in multiple MAP kinase signaling pathways in Magnaporthe oryzae. Environ Microbiol. 2017;19:1959–1974.
  • Mehrabi R, Ding S, Xu JR. MADS-box transcription factor mig1 is required for infectious growth in Magnaporthe grisea. Eukaryot Cell. 2008;7:791–799.
  • Qi Z, Wang Q, Dou X, et al. MoSwi6, an APSES family transcription factor, interacts with MoMps1 and is required for hyphal and conidial morphogenesis, appressorial function and pathogenicity of Magnaporthe oryzae. Mol Plant Pathol. 2012;13:677–689.
  • DeZwaan TM, Carroll AM, Valent B, et al. Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell. 1999;11:2013–2030.
  • Geoghegan IA, Gurr SJ. Chitosan mediates germling adhesion in magnaporthe oryzae and is required for surface sensing and germling morphogenesis. PLoS Pathog. 2016;12:e1005703.
  • Liu W, Zhou X, Li G, et al. Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathog. 2011;7:e1001261.
  • Xu JR, Hamer JE. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev. 1996;10:2696–2706.
  • Sakulkoo W, Oses-Ruiz M, Oliveira GE, et al. A single fungal MAP kinase controls plant cell-to-cell invasion by the rice blast fungus. Science. 2018;359:1399–1403.
  • Park G, Xue C, Zheng L, et al. MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea. Mol Plant Microbe Interact. 2002;15:183–192.
  • Park G, Xue C, Zhao X, et al. Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. Plant Cell. 2006;18:2822–2835.
  • Zhao X, Kim Y, Park G, et al. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in magnaporthe grisea. Plant Cell. 2005;17:1317–1329.
  • Li G, Zhou X, Kong L, et al. MoSfl1 is important for virulence and heat tolerance in magnaporthe oryzae. PLoS One. 2011;6:e19951.
  • Reiner DJ, Lundquist EA. Small GTPases. WormBook. 2018;2018:1–65.
  • Goicoechea SM, Awadia S, Garcia-Mata R. I’m coming to GEF you: regulation of RhoGEFs during cell migration. Cell Adh Migr. 2014;8:535–549.
  • Lawson CD, Burridge K. The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases. 2014;5:e27958.
  • Drgonova J, Drgon T, Roh DH, et al. The GTP-binding protein Rho1p is required for cell cycle progression and polarization of the yeast cell. J Cell Biol. 1999;146:373–387.
  • Adams AE, Johnson DI, Longnecker RM, et al. CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J Cell Biol. 1990;111:131–142.
  • Johnson DI, Pringle JR. Molecular characterization of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell polarity. J Cell Biol. 1990;111:143–152.
  • Mahlert M, Leveleki L, Hlubek A, et al. Rac1 and Cdc42 regulate hyphal growth and cytokinesis in the dimorphic fungus Ustilago maydis. Mol Microbiol. 2006;59:567–578.
  • Scheffer J, Chen C, Heidrich P, et al. A CDC42 homologue in Claviceps purpurea is involved in vegetative differentiation and is essential for pathogenicity. Eukaryot Cell. 2005;4:1228–1238.
  • Zheng W, Zhao Z, Chen J, et al. A Cdc42 ortholog is required for penetration and virulence of Magnaporthe grisea. Fungal Genet Biol. 2009;46:450–460.
  • Ono E, Wong HL, Kawasaki T, et al. Essential role of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci U S A. 2001;98:759–764.
  • Chen C, Dickman MB. Dominant active Rac and dominant negative Rac revert the dominant active Ras phenotype in Colletotrichum trifolii by distinct signalling pathways. Mol Microbiol. 2004;51:1493–1507.
  • Chen J, Zheng W, Zheng S, et al. Rac1 is required for pathogenicity and Chm1-dependent conidiogenesis in rice fungal pathogen Magnaporthe grisea. PLoS Pathog. 2008;4:e1000202.
  • Daniels RH, Bokoch GM. p21-activated protein kinase: a crucial component of morphological signaling? Trends Biochem Sci. 1999;24:350–355.
  • Dohlman HG, Thorner JW. Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu Rev Biochem. 2001;70:703–754.
  • Henras AK, Soudet J, Gerus M, et al. The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci. 2008;65:2334–2359.
  • Tschochner H, Hurt E. Pre-ribosomes on the road from the nucleolus to the cytoplasm. Trends Cell Biol. 2003;13:255–263.
  • Venema J, Tollervey D. Ribosome synthesis in Saccharomyces cerevisiae. Annu Rev Genet. 1999;33:261–311.
  • Kressler D, Hurt E, Bassler J. Driving ribosome assembly. Biochim Biophys Acta. 2010;1803:673–683.
  • Strunk BS, Karbstein K. Powering through ribosome assembly. RNA. 2009;15:2083–2104.
  • Juhnke H, Charizanis C, Latifi F, et al. The essential protein fap7 is involved in the oxidative stress response of Saccharomyces cerevisiae. Mol Microbiol. 2000;35:936–948.
  • Santama N, Ogg SC, Malekkou A, et al. Characterization of hCINAP, a novel coilin-interacting protein encoded by a transcript from the transcription factor TAFIID32 locus. J Biol Chem. 2005;280:36429–36441.
  • Granneman S, Nandineni MR, Baserga SJ. The putative NTPase Fap7 mediates cytoplasmic 20S pre-rRNA processing through a direct interaction with Rps14. Mol Cell Biol. 2005;25:10352–10364.
  • Hellmich UA, Weis BL, Lioutikov A, et al. Essential ribosome assembly factor Fap7 regulates a hierarchy of RNA-protein interactions during small ribosomal subunit biogenesis. Proc Natl Acad Sci U S A. 2013;110:15253–15258.
  • Giaever G, Chu AM, Ni L, et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature. 2002;418:387–391.
  • Drakou CE, Malekkou A, Hayes JM, et al. hCINAP is an atypical mammalian nuclear adenylate kinase with an ATPase motif: structural and functional studies. Proteins. 2012;80:206–220.
  • Ren H, Wang L, Bennett M, et al. The crystal structure of human adenylate kinase 6: an adenylate kinase localized to the cell nucleus. Proc Natl Acad Sci U S A. 2005;102:303–308.
  • Leipe DD, Koonin EV, Aravind L. Evolution and classification of P-loop kinases and related proteins. J Mol Biol. 2003;333:781–815.
  • Loc’H J, Blaud M, Rety S, et al. RNA mimicry by the fap7 adenylate kinase in ribosome biogenesis. PLoS Biol. 2014;12:e1001860.
  • Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A. 2001;98:4569–4574.
  • Zhai R, Meng G, Zhao Y, et al. A novel nuclear-localized protein with special adenylate kinase properties from caenorhabditis elegans. Febs Lett. 2006;580:3811–3817.
  • Dagdas YF, Yoshino K, Dagdas G, et al. Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae. Science. 2012;336:1590–1595.
  • Talbot NJ, Ebbole DJ, Hamer JE. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell. 1993;5:1575–1590.
  • Cao H, Huang P, Zhang L, et al. Characterization of 47 Cys2 -His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. New Phytol. 2016;211:1035–1051.
  • Lu J, Cao H, Zhang L, et al. Systematic analysis of Zn2Cys6 transcription factors required for development and pathogenicity by high-throughput gene knockout in the rice blast fungus. PLoS Pathog. 2014;10:e1004432.
  • Liu XH, Lu JP, Zhang L, et al. Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Eukaryot Cell. 2007;6:997–1005.
  • Vijn I, Govers F. Agrobacterium tumefaciens mediated transformation of the oomycete plant pathogen Phytophthora infestans. Mol Plant Pathol. 2003;4:459–467.
  • Lau GW, Hamer JE. Acropetal: a genetic locus required for conidiophore architecture and pathogenicity in the rice blast fungus. Fungal Genet Biol. 1998;24:228–239.