1,880
Views
7
CrossRef citations to date
0
Altmetric
Brief Report

Twitching motility of Stenotrophomonas maltophilia under iron limitation: In-silico, phenotypic and proteomic approaches

ORCID Icon & ORCID Icon
Pages 104-112 | Received 09 Oct 2019, Accepted 02 Dec 2019, Published online: 20 Jan 2020

References

  • Tian L, Sun Z, Zhang Z. Antimicrobial resistance of pathogens causing nosocomial bloodstream infection in Hubei Province, China, from 2014 to 2016: a multicenter retrospective study. BMC Public Health. 2018;18:1121.
  • Matta R, Hallit S, Hallit R, et al. Epidemiology and microbiological profile comparison between community and hospital acquired infections: A multicenter retrospective study in Lebanon. J Infect Public Health. 2018;11:405–411.
  • Tang CQ, Li JQ, Shou BM, et al. Epidemiology and outcomes of bloodstream infections in 177 severe burn patients from an industrial disaster: a multicentre retrospective study. Clin Microbiol Infect. 2018;24:199.e1-199.e7.
  • Rosenthal VD, Desse J, Maurizi DM, et al. Impact of the International Nosocomial Infection Control Consortium’s multidimensional approach on rates of ventilator-associated pneumonia in 14 intensive care units in 11 hospitals of 5 cities within Argentina. Am J Infect Control. 2018;46:674–679.
  • Montravers P, Tubach F, Lescot T, et al.; For the DURAPOP Trial Group. Short-course antibiotic therapy for critically ill patients treated for postoperative intra-abdominal infection: the DURAPOP randomised clinical trial. Intensive Care Med. 2018;44:300–310.
  • Velázquez-Acosta C, Zarco-Márquez S, Jiménez-Andrade MC, et al. Stenotrophomonas maltophilia bacteremia and pneumonia at a tertiary-care oncology center: a review of 16 years. Support Care Cancer. 2018;26:1953–1960.
  • Kuo S-H, Lin W-R, Lin J-Y, et al. The epidemiology, antibiograms and predictors of mortality among critically-ill patients with central line-associated bloodstream infections. J Microbiol Immunol Infect. 2018;51:401–410.
  • Brooke JS. Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev. 2012;25:2–41.
  • Ryan RP, Monchy S, Cardinale M, et al. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nature Rev Microbiol. 2009;7:514–525.
  • Looney WJ, Narita M, Mühlemann K. Stenotrophomonas maltophilia: an emerging opportunist human pathogen. Lancet Infect Dis. 2009;9:312–323.
  • Abbott IJ, Slavin MA, Turnidge JD, et al. Stenotrophomonas maltophilia: emerging disease patterns and challenges for treatment. Expert Rev Anti Infect Ther. 2011;9:471–488.
  • Nyč O, Matějková J. Stenotrophomonas maltophilia: significant contemporary hospital pathogen — review. Folia Microbiol (Praha). 2010;55:286–294.
  • Senol E. Stenotrophomonas maltophilia: the significance and role as a nosocomial pathogen. J Hosp Infect. 2004;57:1–7.
  • Crossman LC, Gould VC, Dow JM, et al. The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol. 2008;9:R74.
  • Zhang L, Li X-Z, Poole K. Multiple antibiotic resistance in Stenotrophomonas maltophilia: involvement of a multidrug efflux system. Antimicrob Agents Chemother. 2000;44:287–293.
  • Sánchez MB. Antibiotic resistance in the opportunistic pathogen Stenotrophomonas maltophilia. Front Microbiol [Internet]. 2015 [cited 2019 May 17];6. Available from: http://journal.frontiersin.org/Article/https://doi.org/10.3389/fmicb.2015.00658/abstract
  • Sanchez MB, Hernandez A, Martinez JL. Stenotrophomonas maltophilia drug resistance. Future Microbiol. 2009;4:655–660.
  • Di Bonaventura G, Prosseda G, Del Chierico F, et al. Molecular characterization of virulence determinants of Stenotrophomonas Maltophilia strains isolated from patients affected by cystic fibrosis. Int J Immunopathol Pharmacol. 2007;20:529–537.
  • Figueirêdo PMS, Furumura MT, Santos AM, et al. Cytotoxic activity of clinical Stenotrophomonas maltophilia. Lett Appl Microbiol. 2006;43:443–449.
  • Chhibber S, Gupta A, Sharan R, et al. Putative virulence characteristics of Stenotrophomonas maltophilia: a study on clinical isolates. World J Microbiol Biotechnol. 2008;24:2819–2825.
  • Nicoletti M, Iacobino A, Prosseda G, et al. Stenotrophomonas maltophilia strains from cystic fibrosis patients: genomic variability and molecular characterization of some virulence determinants. Int J Med Microbiol. 2011;301:34–43.
  • Rohmer L, Hocquet D, Miller SI. Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol. 2011;19:341–348.
  • Casadevall A, Pirofski L. Virulence factors and their mechanisms of action: the view from a damage–response framework. J Water Health. 2009;7:S2–18.
  • Josenhans C, Suerbaum S. The role of motility as a virulence factor in bacteria. Int J Med Microbiol. 2002;291:605–614.
  • Kalidasan V, Joseph N, Kumar S, et al. The ‘Checkmate’ for iron between human host and invading bacteria: chess game analogy. Indian J Microbiol. 2018;58:257–267.
  • de Oliveira-garcia D, Dall’Agnol M, Rosales M, et al. Characterization of flagella produced by clinical strains of Stenotrophomonas maltophilia. Emerging Infect Dis. 2002;8:918–923.
  • Thomas R, Hamat RA, Neela V. Extracellular enzyme profiling of Stenotrophomonas maltophilia clinical isolates. Virulence. 2014;5:326–330.
  • Passerini De Rossi B, Calenda M, Vay C, et al. Biofilm formation by Stenotrophomonas maltophilia isolates from device-associated nosocomial infections. Revista Argentina De Microbiología. 2007;39:204–212.
  • Pompilio A, Piccolomini R, Picciani C, et al. Factors associated with adherence to and biofilm formation on polystyrene by Stenotrophomonas maltophilia : the role of cell surface hydrophobicity and motility. FEMS Microbiol Lett. 2008;287:41–47.
  • Pompilio A, Pomponio S, Crocetta V, et al. Phenotypic and genotypic characterization of Stenotrophomonas maltophilia isolates from patients with cystic fibrosis: genome diversity, biofilm formation, and virulence. BMC Microbiol. 2011;11:159.
  • Garcia CA, Rossi BPD, Alcaraz E, et al. Siderophores of Stenotrophomonas maltophilia: detection and determination of their chemical nature. Revista Argentina De Microbiología. 2012;44:150–154.
  • García CA, Alcaraz ES, Franco MA, et al. Iron is a signal for Stenotrophomonas maltophilia biofilm formation, oxidative stress response, OMPs expression, and virulence. Front Microbiol [Internet]. 2015 [cited 2019 May 17];6. Available from: http://journal.frontiersin.org/Article/https://doi.org/10.3389/fmicb.2015.00926/abstract
  • Kalidasan V, Azman A, Joseph N, et al. Putative iron acquisition systems in Stenotrophomonas maltophilia. Molecules. 2018;23:2048.
  • Kalidasan V, Joseph N, Kumar S, et al. Iron and virulence in Stenotrophomonas Maltophilia: all we know so far. Front Cell Infect Microbiol [Internet]. 2018 [cited 2019 Apr 30];8. Available from: https://www.frontiersin.org/article/https://doi.org/10.3389/fcimb.2018.00401/full
  • Aziz RK, Bartels D, Best AA, et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75.
  • Overbeek R, Olson R, Pusch GD, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014;42:D206–14.
  • Navarro Llorens JM, Tormo A, Martínez-García E. Stationary phase in gram-negative bacteria. FEMS Microbiol Rev. 2010;34:476–495.
  • Turnbull L, Whitchurch CB. Motility assay: twitching MOTILITY [Internet]. In: Filloux A, Ramos J-L, editors. Pseudomonas methods and protocols. New York: Springer New York; 2014 [cited 2019 May 17]:73–86. Available from: http://link.springer.com/https://doi.org/10.1007/978-1-4939-0473-0_9
  • Jimenez PN, Koch G, Papaioannou E, et al. Role of PvdQ in Pseudomonas aeruginosa virulence under iron-limiting conditions. Microbiology. 2010;156:49–59.
  • Adamek M, Linke B, Schwartz T. Virulence genes in clinical and environmental Stenotrophomas maltophilia isolates: A genome sequencing and gene expression approach. Microb Pathog. 2014;67–68:20–30.
  • Adegoke AA, Stenström TA, Okoh AI. Stenotrophomonas maltophilia as an emerging ubiquitous pathogen: looking beyond contemporary antibiotic therapy. Front Microbiol [Internet]. 2017 [cited 2019 Jun 6];8. Available from: http://journal.frontiersin.org/article/https://doi.org/10.3389/fmicb.2017.02276/full
  • Mattick JS. Type IV Pili and twitching motility. Annu Rev Microbiol. 2002;56:289–314.
  • Patriquin GM, Banin E, Gilmour C, et al. Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol. 2008;190:662–671.
  • Singh PK. Iron sequestration by human lactoferrin stimulates P. aeruginosa surface motility and blocks biofilm formation. BioMetals. 2004;17:267–270.
  • Singh PK, Parsek MR, Greenberg EP, et al. A component of innate immunity prevents bacterial biofilm development. Nature. 2002;417:552–555.
  • Garazi M, Singer C, Tai J, et al. Bloodstream infections caused by Stenotrophomonas maltophilia: a seven-year review. J Hosp Infect. 2012;81:114–118.
  • Cho S-Y, Lee D-G, Choi S-M, et al. Stenotrophomonas maltophilia bloodstream infection in patients with hematologic malignancies: a retrospective study and in vitro activities of antimicrobial combinations. BMC Infect Dis [Internet] 2015 [cited 2019 May 18];15. Available from: http://bmcinfectdis.biomedcentral.com/articles/https://doi.org/10.1186/s12879-015-0801-7
  • Chang Y-T, Lin C-Y, Lu P-L, et al. Stenotrophomonas maltophilia bloodstream infection: comparison between community-onset and hospital-acquired infections. J Microbiol Immunol Infect. 2014;47:28–35.
  • Micozzi A, Venditti M, Monaco M, et al. Bacteremia due to Stenotrophomonas maltophilia in patients with hematologic malignancies. Clinl Infect Dis. 2000;31:705–711.
  • Kagen J, Zaoutis TE, McGowan KL, et al. Bloodstream infection caused by Stenotrophomonas maltophilia in children. Pediatr Infect Dis J. 2007;26:508–512.
  • de Oliveira-garcia D, Dall’Agnol M, Rosales M, et al. Fimbriae and adherence of Stenotrophomonas maltophilia to epithelial cells and to abiotic surfaces. Cell Microbiol. 2003;5:625–636.
  • Chhibber S, Zgair AK. Involvement of Stenotrophomonas maltophilia Flagellin in bacterial adhesion to airway biotic surfaces: an in vitro study. Am J Biomed Sci. 2009;1:188–195.
  • O’Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol. 1998;30:295–304.
  • Burrows LL. Pseudomonas aeruginosa twitching motility: type IV Pili in action. Annu Rev Microbiol. 2012;66:493–520.
  • Craig L, Forest KT, Maier B. Type IV pili: dynamics, biophysics and functional consequences. Nature Reviews Microbiology [Internet]. 2019 [cited 2019 Jun 7]. Available from: http://www.nature.com/articles/s41579-019-0195-4
  • Leighton TL, Buensuceso RNC, Howell PL, et al. Biogenesis of Pseudomonas aeruginosa type IV pili and regulation of their function: pseudomonas aeruginosa type IV pili. Environ Microbiol. 2015;17:4148–4163.
  • Kearns DB. A field guide to bacterial swarming motility. Nature Rev Microbiol. 2010;8:634–644.
  • Wall D, Kaiser D. Type IV pili and cell motility. Mol Microbiol. 1999;32:01–10.
  • Kaiser D. Bacterial motility: how do pili pull? Curr Biol. 2000;10:R777–80.