4,510
Views
16
CrossRef citations to date
0
Altmetric
Review Article

Predictors of outcome in childhood Plasmodium falciparum malaria

, &
Pages 199-221 | Received 30 Sep 2019, Accepted 20 Jan 2020, Published online: 17 Feb 2020

References

  • Ramasamy R. Zoonotic malaria – global overview and research and policy needs. Front Public Health. 2014 Aug 18;2:123.
  • World Health Organisation. World Malaria Report 2018. Geneva: World Health Organization; 2018.
  • Mendis K, Sina BJ, Marchesini P, et al. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg. 2001 Feb;64(1–2 Suppl):97–106.
  • Cox-Singh J, Davis TME, Lee K-S, et al. Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin Infect Dis. 2008 Jan 15;46(2):165–171.
  • White NJ, Pukrittayakamee S, Hien TT, et al. Malaria. Lancet. 2014 Feb 22;383(9918):723–735.
  • Snow RW, Marsh K. The consequences of reducing transmission of Plasmodium falciparum in Africa. Adv Parasitol. 2002;52:235–264.
  • Phillips MA, Burrows JN, Manyando C, et al. Malaria. Nat Rev Dis Primer. 2017 Aug;3(3):17050.
  • Tuteja R. Malaria − an overview. FEBS J. 2007;274(18):4670–4679.
  • World Health Organisation. WHO Malaria Terminology.Geneva: World Health Organization; 2019.
  • Marsh K, Forster D, Waruiru C, et al. Indicators of life-threatening malaria in African children. N Engl J Med. 1995 May 25;332(21):1399–1404.
  • Cunnington AJ, Walther M, Riley EM. Piecing together the puzzle of severe malaria. Sci Transl Med. 2013 Nov 13;5(211):211ps18.
  • Varo R, Crowley VM, Sitoe A, et al. Adjunctive therapy for severe malaria: a review and critical appraisal. Malar J. 2018 Jan 24;17(1):47.
  • Taylor T, Olola C, Valim C, et al. Standardized data collection for multi-center clinical studies of severe malaria in African children: establishing the SMAC network. Trans R Soc Trop Med Hyg. 2006 Jul;100(7):615–622.
  • von Seidlein L, Olaosebikan R, Hendriksen ICE, et al. Predicting the clinical outcome of severe falciparum malaria in African children: findings from a large randomized trial. Clin Infect Dis. 2012 Apr;54(8):1080–1090.
  • Cunnington AJ. The importance of pathogen load. PLoS Pathog. 2015 Jan 8;11(1):e1004563.
  • Georgiadou A, Lee HJ, Walther M, et al. Modelling pathogen load dynamics to elucidate mechanistic determinants of host– Plasmodium falciparum interactions. Nat Microbiol. 2019 Sep;4(9):1592–1602.
  • World Health Organization. Severe Malaria. Trop Med Int Health. 2014 Sep;19(1):7–131.
  • World Health Organisation. Guidelines for the Treatment of Malaria. 3rd ed. Geneva: World Health Organization; 2015.
  • Centers for Disease Control and Prevention - malaria - about malaria - disease [Internet]. 2019 [cited 2019 Sep 28]. Available from: https://www.cdc.gov/malaria/about/disease.html
  • Lalloo DG, Shingadia D, Bell DJ, et al. UK malaria treatment guidelines 2016. J Infect. 2016 Jun 1;72(6):635–649.
  • Smith T, Schellenberg JA, Hayes R. Attributable fraction estimates and case definitions for malaria in endemic areas. Stat Med. 1994 Nov 30;13(22):2345–2358.
  • Kendjo E, Agbenyega T, Bojang K, et al. Mortality patterns and site heterogeneity of severe malaria in African children. PLoS One. 2013 Mar 7;8(3):e58686.
  • Njuguna P, Maitland K, Nyaguara A, et al. Observational study: 27 years of severe malaria surveillance in Kilifi, Kenya. BMC Med. 2019 Jul 8;17(1):124.
  • Cunnington AJ, Riley EM, Walther M. Stuck in a rut? Reconsidering the role of parasite sequestration in severe malaria syndromes. Trends Parasitol. 2013 Dec;29(12):585–592.
  • Silamut K, White NJ. Relation of the stage of parasite development in the peripheral blood to prognosis in severe falciparum malaria. Trans R Soc Trop Med Hyg. 1993 Jul 1;87(4):436–443.
  • Taylor TE, Molyneux ME, Wirima JJ, et al. Blood glucose levels in Malawian children before and during the administration of intravenous quinine for severe falciparum malaria. N Engl J Med. 1988 Oct 20;319(16):1040–1047.
  • White NJ. The pharmacokinetics of quinine and quinidine in malaria. Acta Leiden. 1987;55:65–76.
  • Osier FHA, Berkley JA, Ross A, et al. Abnormal blood glucose concentrations on admission to a rural Kenyan district hospital: prevalence and outcome. Arch Dis Child. 2003 Jul 1;88(7):621–625.
  • Jallow M, Casals-Pascual C, Ackerman H, et al. Clinical features of severe malaria associated with death: a 13-year observational study in The Gambia. PLoS One. 2012 Sep 28;7(9):e45645.
  • Bassat Q, Guinovart C, Sigaúque B, et al. Malaria in rural Mozambique Part II: Children Admitted to Hospital. Malar J. 2008 Feb 26;7(1):37.
  • Dondorp AM, Fanello CI, Hendriksen IC, et al. Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet. 2010 Nov 13;376(9753):1647–1657.
  • White NJ, Warrell DA, Chanthavanich P, et al. Severe hypoglycemia and hyperinsulinemia in falciparum malaria. N Engl J Med. 1983 Jul 14;309(2):61–66.
  • Thien HV, Kager PA, Sauerwein HP. Hypoglycemia in falciparum malaria: is fasting an unrecognized and insufficiently emphasized risk factor? Trends Parasitol. 2006 Sep 1;22(9):410–415.
  • Madrid L, Lanaspa M, Maculuve S, et al. Malaria-associated hypoglycaemia in children. Expert Rev Anti Infect Ther. 2014 Dec;26(13):1–11.
  • Camara B, Diagne NR, Faye PM, et al. Critères de gravité et facteurs pronostiques du paludisme chez l’enfant à Dakar. Médecine Mal Infect. 2011 Feb 1;41(2):63–67.
  • Kremsner PG, Valim C, Missinou MA, et al. Prognostic value of circulating pigmented cells in African children with malaria. J Infect Dis. 2009 Jan 1;199(1):142–150.
  • Taylor TE, Borgstein A, Molyneux ME. Acid-base status in paediatric Plasmodium falciparum malaria. Q J Med. 1993 Feb;86(2):99–109.
  • English M, Sauerwein R, Waruiru C, et al. Acidosis in severe childhood malaria. QJM. 1997 Apr 1;90(4):263–270.
  • Newton CRJC, Valim C, Krishna S, et al. The prognostic value of measures of acid/base balance in pediatric falciparum malaria, compared with other clinical and laboratory parameters. Clin Infect Dis. 2005 Oct 1;41(7):948–957.
  • Krishna S, Waller DW, Kuile Ter F, et al. Lactic acidosis and hypoglycaemia in children with severe malaria: pathophysiological and prognostic significance. Trans R Soc Trop Med Hyg. 1994 Jan 1;88(1):67–73.
  • Genton B, D’Acremont V, Rare L, et al. Plasmodium vivax and mixed infections are associated with severe malaria in children: a prospective cohort study from Papua New Guinea. PLoS Med. 2008 Jun 17;5(6):e127.
  • Lackritz EM, Campbell CC, Ruebush TK, et al. Effect of blood transfusion on survival among children in a Kenyan hospital. Lancet. 1992 Aug 29;340(8818):524–528.
  • Van den Steen PE, Deroost K, Deckers J, et al. Pathogenesis of malaria-associated acute respiratory distress syndrome. Trends Parasitol. 2013 Jul;29(7):346–358.
  • Silva da GB, Pinto JR, Barros EJG, et al. Kidney involvement in malaria: an update. Rev Inst Med Trop Sao Paulo. 2017;59:e53.
  • Elsheikha HM, Sheashaa HA. Epidemiology, pathophysiology, management and outcome of renal dysfunction associated with Plasmodia infection. Parasitol Res. 2007 Jul 13;101(5):1183.
  • Inker AL, Perrone R. Assessment of kidney function [Internet]. UpToDate. [cited 2019 Oct 8]. Available from: https://www.uptodate.com/contents/assessment-of-kidney-function
  • Conroy AL, Hawkes M, Elphinstone RE, et al. Acute kidney injury is common in pediatric severe malaria and is associated with increased mortality. Open Forum Infect Dis. 2016 Apr 1;3(2):ofw046.
  • Conroy AL, Opoka RO, Bangirana P, et al. Acute kidney injury is associated with impaired cognition and chronic kidney disease in a prospective cohort of children with severe malaria. BMC Med. 2019 May 21;17(1):98.
  • Lacerda MVG, Mourão MPG, Coelho HCC, et al. Thrombocytopenia in malaria: who cares? Mem Inst Oswaldo Cruz. 2011 Aug;106:52–63.
  • Lathia TB, Joshi R. Can hematological parameters discriminate malaria from nonmalarious acute febrile illness in the tropics? Indian J Med Sci. 2004 Jun;58(6):239–244.
  • Ladhani S, Lowe B, Cole AO, et al. Changes in white blood cells and platelets in children with falciparum malaria: relationship to disease outcome. Br J Haematol. 2002;119(3):839–847.
  • Chimalizeni Y, Kawaza K, Taylor T, et al. The platelet count in cerebral malaria, is it useful to the clinician? Am J Trop Med Hyg. 2010 Jul;83(1):48–50.
  • Francischetti IMB, Seydel KB, Monteiro RQ. Blood coagulation, inflammation, and malaria. Microcirculation. 2008;15(2):81–107.
  • Kochar DK, Das A, Kochar A, et al. Thrombocytopenia in Plasmodium falciparum, Plasmodium vivax and mixed infection malaria: a study from Bikaner (Northwestern India). Platelets. 2010;21(8):623–627.
  • George P, Hegde N. Haematemesis: an uncommon presenting symptom of Plasmodium falciparum malaria. J Clin Diagn Res. 2013 May;7(5):917–918.
  • Wiwanitkit V. Overt bleeding in malarial patients: experience and review. Blood Coagul Fibrinolysis. 2008 Jan;19(1):1–4.
  • Kochhar R, Goenka MK, Mehta S, et al. Gastrointestinal bleeding in malaria. Indian J Gastroenterol. 1990 Oct;9(4):295–296.
  • Snow RW, de Azevedo BI, Lowe BS, et al. Severe childhood malaria in two areas of markedly different falciparum transmission in East Africa. Acta Trop. 1994 Sep 1;57(4):289–300.
  • Snow RW, Guerra CA, Noor AM, et al. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature. 2005 Mar;434(7030):214–217.
  • Slutsker L, Taylor TE, Wirima JJ, et al. In-hospital morbidity and mortality due to malaria-associated severe anaemia in two areas of Malawi with different patterns of malaria infection. Trans R Soc Trop Med Hyg. 1994 Sep 1;88(5):548–551.
  • Modiano D, Sirima BS, Sawadogo A, et al. Severe malaria in Burkina Faso: influence of age and transmission level on clinical presentation. Am J Trop Med Hyg. 1998 Oct;59(4):539–542.
  • Calis JCJ, Phiri KS, Faragher EB, et al. Severe anemia in Malawian children. N Engl J Med. 2008 Feb 28;358(9):888–899.
  • Biemba G, Dolmans D, Thuma PE, et al. Severe anaemia in Zambian children with Plasmodium falciparum malaria. Trop Med Int Health TM IH. 2000 Jan;5(1):9–16.
  • Helbok R, Kendjo E, Issifou S, et al. The Lambaréné Organ Dysfunction Score (LODS) is a simple clinical predictor of fatal malaria in African children. J Infect Dis. 2009 Dec 15;200(12):1834–1841.
  • Mabeza GF, Moyo VM, Thuma PE, et al. Predictors of severity of illness on presentation in children with cerebral malaria. Ann Trop Med Parasitol. 1995 Jun;89(3):221–228.
  • Anand AC, Puri P. Jaundice in malaria. J Gastroenterol Hepatol. 2005;20(9):1322–1332.
  • Gaieski FD, Mikkelsen EM. Definition, classification, etiology, and pathophysiology of shock in adults [Internet]. UpToDate. [cited 2019 Oct 9]. Available from: https://www.uptodate.com/contents/definition-classification-etiology-and-pathophysiology-of-shock-in-adults?search=definition-classification–etiology-and-pathophysiology-of-shock-in-adults2&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1
  • Maitland K, Levin M, English M, et al. Severe P. falciparum malaria in Kenyan children: evidence for hypovolaemia. QJM. 2003 Jun 1;96(6):427–434.
  • Waller D, Krishna S, Crawley J, et al. Clinical features and outcome of severe malaria in Gambian children. Clin Infect Dis. 1995 Sep 1;21(3):577–587.
  • Dzeing-Ella A, Nze Obiang PC, Tchoua R, et al. Severe falciparum malaria in Gabonese children: clinical and laboratory features. Malar J. 2005 Jan;9(4):1.
  • Evans JA, May J, Ansong D, et al. Capillary refill time as an independent prognostic indicator in severe and complicated malaria. J Pediatr. 2006 Nov 1;149(5):676–681.
  • Sypniewska P, Duda JF, Locatelli I, et al. Clinical and laboratory predictors of death in African children with features of severe malaria: a systematic review and meta-analysis. BMC Med. 2017 Aug 3;15(1):147.
  • Leopold SJ, Watson JA, Jeeyapant A, et al. Investigating causal pathways in severe falciparum malaria: A pooled retrospective analysis of clinical studies. PLoS Med. 2019 Aug;16(8):e1002858.
  • Berkley JA, Ross A, Mwangi I, et al. Prognostic indicators of early and late death in children admitted to district hospital in Kenya: cohort study. BMJ. 2003 Feb 15;326(7385):361.
  • Conroy AL, Hawkes M, Hayford K, et al.Prospective validation of pediatric disease severity scores to predict mortality in Ugandan children presenting with malaria and non-malaria febrile illness. Crit Care. 2015 Feb 23;19(1):47.
  • Hendriksen ICE, White LJ, Veenemans J, et al. Defining falciparum-malaria-attributable severe febrile illness in moderate-to-high transmission settings on the basis of plasma PfHRP2 concentration. J Infect Dis. 2013 Jan 15;207(2):351–361.
  • Dondorp AM, Desakorn V, Pongtavornpinyo W, et al. Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoS Med. 2005 Aug 23;2(8):e204.
  • Rubach MP, Mukemba J, Florence S, et al. Plasma Plasmodium falciparum histidine-rich protein-2 concentrations are associated with malaria severity and mortality in Tanzanian children. PLoS One. 2012 May 7;7(5):e35985.
  • Hendriksen ICE, Mwanga-Amumpaire J, von Seidlein L, et al. Diagnosing severe falciparum malaria in parasitaemic African children: a prospective evaluation of plasma PfHRP2 measurement. PLoS Med. 2012;9(8):e1001297.
  • Fox LL, Taylor TE, Pensulo P, et al. Histidine-rich protein 2 plasma levels predict progression to cerebral malaria in Malawian children with Plasmodium falciparum infection. J Infect Dis. 2013 Aug 1;208(3):500–503.
  • Viana GMR, Okoth SA, Silva-Flannery L, et al. Histidine-rich protein 2 (pfhrp2) and pfhrp3 gene deletions in Plasmodium falciparum isolates from select sites in Brazil and Bolivia. PLoS One. 2017 Mar 16;12(3):e0171150.
  • Aley SB, Sherwood JA, Howard RJ. Knob-positive and knob-negative Plasmodium falciparum differ in expression of a strain-specific malarial antigen on the surface of infected erythrocytes. J Exp Med. 1984 Nov 1;160(5):1585–1590.
  • Deitsch KW, Dzikowski R. Variant gene expression and antigenic variation by malaria parasites. Annu Rev Microbiol. 2017 Sep 8;71:625–641.
  • Wahlgren M, Goel S, Akhouri RR. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria. Nat Rev Microbiol. 2017 Aug;15(8):479–491.
  • Turner L, Lavstsen T, Berger SS, et al. Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature. 2013 Jun 27;498(7455):502–505.
  • Scherf A, Hernandez-Rivas R, Buffet P, et al. Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. EMBO J. 1998 Sep 15;17(18):5418–5426.
  • Smith JD. The role of PfEMP1 adhesion domain classification in Plasmodium falciparum pathogenesis research. Mol Biochem Parasitol. 2014 Jul;195(2):82–87.
  • Bull PC, Lowe BS, Kortok M, et al. Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. Nat Med. 1998 Mar;4(3):358–360.
  • Nielsen MA, Staalsoe T, Kurtzhals JAL, et al. Plasmodium falciparum variant surface antigen expression varies between isolates causing severe and nonsevere malaria and is modified by acquired immunity. J Immunol. 2002 Apr 1;168(7):3444–3450.
  • Rottmann M, Lavstsen T, Mugasa JP, et al. Differential expression of var gene groups is associated with morbidity caused by Plasmodium falciparum infection in Tanzanian children. Infect Immun. 2006 Jul;74(7):3904–3911.
  • Falk N, Kaestli M, Qi W, et al. Analysis of Plasmodium falciparum var genes expressed in children from Papua New Guinea. J Infect Dis. 2009 Jul;1(200):347–356.
  • Warimwe GM, Keane TM, Fegan G, et al. Plasmodium falciparum var gene expression is modified by host immunity. Proc Natl Acad Sci. 2009 Dec 22;106(51):21801–21806.
  • Jespersen JS, Wang CW, Mkumbaye SI, et al. Plasmodium falciparum var genes expressed in children with severe malaria encode CIDRα1 domains. EMBO Mol Med. 2016 Aug 1;8(8):839–850.
  • Jensen ATR, Magistrado P, Sharp S, et al. Plasmodium falciparum associated with severe childhood malaria preferentially expresses PfEMP1 encoded by group A var genes. J Exp Med. 2004 May 3;199(9):1179–1190.
  • Bouwens EAM, Stavenuiter F, Mosnier LO. Cell painting with an engineered EPCR to augment the protein C system. Thromb Haemost. 2015 Nov 25;114(6):1144–1155.
  • Duffy F, Bernabeu M, Babar PH, et al. Meta-analysis of plasmodium falciparum var signatures contributing to severe malaria in African children and Indian adults. mBio. 2019 30;10(2):e00217–19.
  • Blasco B, Leroy D, Fidock DA. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med. 2017 Aug 4;23(8):917–928.
  • Haldar K, Bhattacharjee S, Safeukui I. Drug resistance in Plasmodium. Nat Rev Microbiol. 2018 Mar;16(3):156–170.
  • Woodrow CJ, White NJ. The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread. FEMS Microbiol Rev. 2017;41(1):34–48.
  • Lubell Y, Dondorp A, Guérin PJ, et al. Artemisinin resistance – modelling the potential human and economic costs. Malar J. 2014 Nov 23;13(1):452.
  • Grau GE, Taylor TE, Molyneux ME, et al. Tumor necrosis factor and disease severity in children with falciparum malaria. N Engl J Med. 1989 Jun 15;320(24):1586–1591.
  • Perkins DJ, Weinberg JB, Kremsner PG. Reduced interleukin-12 and transforming growth factor-beta1 in severe childhood malaria: relationship of cytokine balance with disease severity. J Infect Dis. 2000 Sep;182(3):988–992.
  • van Hensbroek MB, Palmer A, Onyiorah E, et al. The effect of a monoclonal antibody to tumor necrosis factor on survival from childhood cerebral malaria. J Infect Dis. 1996 Nov;174(5):1091–1097.
  • Kossodo S, Monso C, Juillard P, et al. Interleukin-10 modulates susceptibility in experimental cerebral malaria. Immunology. 1997 Aug;91(4):536–540.
  • Sanni LA, Jarra W, Li C, et al. Cerebral edema and cerebral hemorrhages in interleukin-10-deficient mice infected with plasmodium chabaudi. Infect Immun. 2004 May 1;72(5):3054–3058.
  • Do Rosario FAP, Langhorne J. T cell-derived IL-10 and its impact on the regulation of host responses during malaria. Int J Parasitol. 2012 May 15;42(6):549–555.
  • Weidanz WP, Batchelder JM, Flaherty P, et al. Plasmodium chabaudi adami: use of the B-cell-deficient mouse to define possible mechanisms modulating parasitemia of chronic malaria. Exp Parasitol. 2005 Oct;111(2):97–104.
  • Othoro C, Lal AA, Nahlen B, et al. A low interleukin-10 tumor necrosis factor-alpha ratio is associated with malaria anemia in children residing in a holoendemic malaria region in western Kenya. J Infect Dis. 1999 Jan;179(1):279–282.
  • Zhang G, Manaca MN, McNamara-Smith M, et al. Interleukin-10 (IL-10) polymorphisms are associated with IL-10 production and clinical malaria in young children. Infect Immun. 2012 Jul 1;80(7):2316–2322.
  • Kumar R, Ng S, Engwerda C. The role of IL-10 in malaria: a double edged sword. Front Immunol. 2019 Feb 12;10:229.
  • Erdman LK, Dhabangi A, Musoke C, et al. Combinations of host biomarkers predict mortality among Ugandan children with severe malaria: a retrospective case-control study. PLoS One. 2011 Feb 25;6(2):e17440.
  • Higgins SJ, Xing K, Kim H, et al. Systemic release of high mobility group box 1 (HMGB1) protein is associated with severe and fatal Plasmodium falciparum malaria. Malar J. 2013 Mar 19;12:105.
  • Cserti-Gazdewich CM, Dhabangi A, Musoke C, et al. Cytoadherence in paediatric malaria: ABO blood group, CD36, and ICAM1 expression and severe Plasmodium falciparum infection. Br J Haematol. 2012 Oct;159(2):223–236.
  • Graham SM, Chen J, Chung DW, et al. Endothelial activation, haemostasis and thrombosis biomarkers in Ugandan children with severe malaria participating in a clinical trial. Malar J. 2016 Feb 2;15(1):56.
  • Herberg JA, Kaforou M, Wright VJ, et al. Diagnostic test accuracy of a 2-transcript host RNA signature for discriminating bacterial vs viral infection in febrile children. JAMA. 2016 Aug 23;316(8):835–845.
  • Wright VJ, Herberg JA, Kaforou M, et al. Diagnosis of Kawasaki disease using a minimal whole-blood gene expression signature. JAMA Pediatr. 2018 01;172(10):e182293.
  • Birbeck GL, Molyneux ME, Kaplan PW, et al. Blantyre Malaria Project Epilepsy Study (BMPES) of neurological outcomes in retinopathy-positive paediatric cerebral malaria survivors: a prospective cohort study. Lancet Neurol. 2010 Dec;9(12):1173–1181.
  • Seydel KB, Kampondeni SD, Valim C, et al. Brain swelling and death in children with cerebral malaria. N Engl J Med. 2015 Mar 19;372(12):1126–1137.
  • Bejon P, Berkley JA, Mwangi T, et al. Defining childhood severe falciparum malaria for intervention studies. PLoS Med. 2007 Aug;4(8):e251.
  • Maitland K. Management of severe paediatric malaria in resource-limited settings. BMC Med. 2015 Mar 3;13(1):42.
  • Beare NAV, Lewallen S, Taylor TE, et al. Redefining cerebral malaria by including malaria retinopathy. Future Microbiol. 2011 Mar;6(3):349–355.
  • MacCormick IJC, Beare NAV, Taylor TE, et al. Cerebral malaria in children: using the retina to study the brain. Brain. 2014 Aug;137(8):2119–2142.
  • Singh J, Verma R, Tiwari A, et al. Retinopathy as a prognostic marker in cerebral malaria. Indian Pediatr. 2016 Apr 1;53(4):315–317.
  • Potchen MJ, Kampondeni SD, Seydel KB, et al. Acute brain MRI findings in 120 Malawian children with cerebral malaria: new insights into an ancient disease. Am J Neuroradiol. 2012 Oct;33(9):1740–1746.
  • Mohanty S, Taylor TE, Kampondeni S, et al. Magnetic resonance imaging during life: the key to unlock cerebral malaria pathogenesis? Malar J. 2014 Jul;18(13):276.
  • Taylor TE, Molyneux ME. The pathogenesis of pediatric cerebral malaria: eye exams, autopsies and neuro-imaging. Ann N Y Acad Sci. 2015 Apr;1342(1):44–52.
  • Potchen MJ, Kampondeni SD, Seydel KB, et al. 1.5 tesla magnetic resonance imaging to investigate potential etiologies of brain swelling in pediatric cerebral malaria. Am J Trop Med Hyg. 2018;98(2):497–504.
  • Mohanty S, Benjamin LA, Majhi M, et al. Magnetic resonance imaging of cerebral malaria patients reveals distinct pathogenetic processes in different parts of the brain. mSphere. 2017 June 7;2(3):e00193–17.
  • Laothamatas J, Sammet CL, Golay X, et al. Transient lesion in the splenium of the corpus callosum in acute uncomplicated falciparum malaria. Am J Trop Med Hyg. 2014 Jun;90(6):1117–1123.
  • Postels DG, Wu X, Li C, et al. Admission EEG findings in diverse paediatric cerebral malaria populations predict outcomes. Malar J. 2018 May 22;17(1):208.
  • Moussa EM, Huang H, Thézénas ML, et al. Proteomic profiling of the plasma of Gambian children with cerebral malaria. Malar J. 2018 Sep 24;17(1):337.
  • Gupta S, Seydel K, Miranda-Roman MA, et al. Extensive alterations of blood metabolites in pediatric cerebral malaria. PLoS One. 2017;12(4):e0175686.
  • Conroy AL, Hawkes M, McDonald CR, et al. Host biomarkers are associated with response to therapy and long-term mortality in pediatric severe malaria. Open Forum Infect Dis. 2016 Sep;3(3):ofw134.
  • de Jong GM, Slager JJ, Verbon A, et al. Systematic review of the role of angiopoietin-1 and angiopoietin-2 in Plasmodium species infections: biomarkers or therapeutic targets? Malar J. 2016 Dec 1;15(1):581.
  • van Hensbroek MB, Palmer A, Jaffar S, et al. Residual neurologic sequelae after childhood cerebral malaria. J Pediatr. 1997 Jul 1;131(1):125–129.
  • Ssenkusu JM, Hodges JS, Opoka RO, et al. Long-term behavioral problems in children with severe malaria. Pediatrics. 2016 Nov;138(5):e20161965.
  • Berkley JA, Mwangi I, Mellington F, et al. Cerebral malaria versus bacterial meningitis in children with impaired consciousness. QJM. 1999 Mar;92(3):151–157.
  • Kihara M, Carter JA, Newton CRJC. The effect of Plasmodium falciparum on cognition: a systematic review. Trop Med Int Health. 2006 Apr;11(4):386–397.
  • John CC, Bangirana P, Byarugaba J, et al. Cerebral malaria in children is associated with long-term cognitive impairment. Pediatrics. 2008 Jul;122(1):e92–99.
  • Oluwayemi IO, Brown BJ, Oyedeji OA, et al. Neurological sequelae in survivors of cerebral malaria. Pan Afr Med J. 2013 Jul 6;15:88.
  • Idro R, Marsh K, John CC, et al. Cerebral malaria: mechanisms of brain injury and strategies for improved neurocognitive outcome. Pediatr Res. 2010 Oct;68(4):267–274.
  • Boivin MJ. Effects of early cerebral malaria on cognitive ability in Senegalese children. J Dev Behav Pediatr. 2002 Oct;23(5):353–364.
  • Meremikwu MM, Asindi AA, Ezedinachi E. The pattern of neurological sequelae of childhood cerebral malaria among survivors in Calabar, Nigeria. Cent Afr J Med. 1997 Aug;43(8):231–234.
  • Idro R, Jenkins NE, Newton CRJC. Pathogenesis, clinical features, and neurological outcome of cerebral malaria. Lancet Neurol. 2005 Dec;4(12):827–840.
  • Casals-Pascual C, Idro R, Gicheru N, et al. High levels of erythropoietin are associated with protection against neurological sequelae in African children with cerebral malaria. Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2634–2639.
  • Medana IM, Lindert R-B, Wurster U, et al. Cerebrospinal fluid levels of markers of brain parenchymal damage in Vietnamese adults with severe malaria. Trans R Soc Trop Med Hyg. 2005 Aug;99(8):610–617.
  • Holmberg D, Franzén-Röhl E, Idro R, et al. Cerebrospinal fluid kynurenine and kynurenic acid concentrations are associated with coma duration and long-term neurocognitive impairment in Ugandan children with cerebral malaria. Malar J. 2017 28;16(1):303.
  • Shabani E, Ouma BJ, Idro R, et al. Elevated cerebrospinal fluid tumour necrosis factor is associated with acute and long-term neurocognitive impairment in cerebral malaria. Parasite Immunol. 2017 Jul;39(7):e12438.
  • Datta D, Conroy AL, Castelluccio PF, et al. Elevated cerebrospinal fluid tau protein concentrations on admission are associated with long-term neurologic and cognitive impairment in Ugandan children with cerebral malaria. Clin Infect Dis. 2019.
  • Boivin MJ, Vokhiwa M, Sikorskii A, et al. Cerebral malaria retinopathy predictors of persisting neurocognitive outcomes in Malawian children. Pediatr Infect Dis J. 2014 Aug;33(8):821–824.
  • Bangirana P, Musisi S, Boivin MJ, et al. Malaria with neurological involvement in Ugandan children: effect on cognitive ability, academic achievement and behaviour. Malar J. 2011 Nov;3(10):334.
  • Bondi FS. The incidence and outcome of neurological abnormalities in childhood cerebral malaria: a long-term follow-up of 62 survivors. Trans R Soc Trop Med Hyg. 1992 Feb;86(1):17–19.
  • Marti HH, Bernaudin M, Petit E, et al. Neuroprotection and angiogenesis: dual role of erythropoietin in brain ischemia. News Physiol Sci. 2000 Oct;15(5):225–229.
  • Sirén AL, Fratelli M, Brines M, et al. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):4044–4049.
  • Ehrenreich H, Weissenborn K, Prange H, et al. Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke. 2009 Dec;40(12):e647–656.
  • Shabani E, Opoka RO, Idro R, et al. High plasma erythropoietin levels are associated with prolonged coma duration and increased mortality in children with cerebral malaria. Clin Infect Dis. 2015 Jan 1;60(1):27–35.
  • John CC, Panoskaltsis-Mortari A, Opoka RO, et al. Cerebrospinal fluid cytokine levels and cognitive impairment in cerebral malaria. Am J Trop Med Hyg. 2008 Feb;78(2):198–205.
  • White NJ. Anaemia and malaria. Malar J. 2018 Oct 19;17(1):371.
  • Tran TH, Day NP, Ly VC, et al. Blackwater fever in southern Vietnam: a prospective descriptive study of 50 cases. Clin Infect Dis. 1996 Dec;23(6):1274–1281.
  • Bodi JM, Nsibu CN, Longenge RL, et al. Blackwater fever in Congolese children: a report of clinical, laboratory features and risk factors. Malar J. 2013 Jun 15;12(1):205.
  • Recht J, Ashley E, White N. Safety of 8-aminoquinoline antimalarial medicines. Geneva: World Health Organization; 2014.
  • Opoka RO, Waiswa A, Harriet N, et al. Blackwater fever in Ugandan children with severe anemia is associated with poor postdischarge outcomes: a prospective cohort study. Clin Infect Dis. 2019.
  • Jauréguiberry S, Thellier M, Ndour PA, et al. Delayed-onset hemolytic anemia in patients with travel-associated severe malaria treated with artesunate, France, 2011–2013. Emerg Infect Dis. 2015 May;21(5):804–812.
  • Crawley J. Reducing the burden of anemia in infants and young children in malaria-endemic countries of Africa: from evidence to action. Am J Trop Med Hyg. 2004 Aug;71(2 Suppl):25–34.
  • Ghosh K, Ghosh K. Pathogenesis of anemia in malaria: a concise review. Parasitol Res. 2007 Nov;101(6):1463–1469.
  • Weatherall DJ. Genetic variation and susceptibility to infection: the red cell and malaria. Br J Haematol. 2008 May;141(3):276–286.
  • Casanova J-L. Human genetic basis of interindividual variability in the course of infection. Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):E7118–7127.
  • Uyoga S, Ndila CM, Macharia AW, et al. Glucose-6-phosphate dehydrogenase deficiency and the risk of malaria and other diseases in children in Kenya: a case-control and a cohort study. Lancet Haematol. 2015 Oct;2(10):e437–444.
  • Williams TN. Sickle cell disease in Sub-Saharan Africa. Hematol Oncol Clin North Am. 2016 Apr;30(2):343–358.
  • May J, Evans JA, Timmann C, et al. Hemoglobin variants and disease manifestations in severe falciparum malaria. JAMA. 2007 May 23;297(20):2220–2226.
  • Looareesuwan S, Merry AH, Phillips RE, et al. Reduced erythrocyte survival following clearance of malarial parasitaemia in Thai patients. Br J Haematol. 1987 Dec;67(4):473–478.
  • Looareesuwan S, Davis TM, Pukrittayakamee S, et al. Erythrocyte survival in severe falciparum malaria. Acta Trop. 1991 Feb;48(4):263–270.
  • Jakeman GN, Saul A, Hogarth WL, et al. Anaemia of acute malaria infections in non-immune patients primarily results from destruction of uninfected erythrocytes. Parasitology. 1999 Aug;119(Pt 2):127–133.
  • Buffet PA, Safeukui I, Deplaine G, et al. The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology. Blood. 2011 Jan 13;117(2):381–392.
  • Leoni S, Buonfrate D, Angheben A, et al. The hyper-reactive malarial splenomegaly: a systematic review of the literature. Malar J. 2015 Apr;29(14):185.
  • Phillips RE, Looareesuwan S, Warrell DA, et al. The importance of anaemia in cerebral and uncomplicated falciparum malaria: role of complications, dyserythropoiesis and iron sequestration. Q J Med. 1986 Mar;58(227):305–323.
  • Pathak VA, Ghosh K. Erythropoiesis in malaria infections and factors modifying the erythropoietic response. Anemia. 2016;2016:9310905.
  • Wickramasinghe SN, Abdalla SH. Blood and bone marrow changes in malaria. Baillieres Best Pract Res Clin Haematol. 2000 Jun;13(2):277–299.
  • Awandare GA, Ouma Y, Ouma C, et al. Role of monocyte-acquired hemozoin in suppression of macrophage migration inhibitory factor in children with severe malarial anemia. Infect Immun. 2007 Jan;75(1):201–210.
  • Casals-Pascual C, Kai O, Cheung JOP, et al. Suppression of erythropoiesis in malarial anemia is associated with hemozoin in vitro and in vivo. Blood. 2006 Oct 15;108(8):2569–2577.
  • Aguilar R, Moraleda C, Achtman AH, et al. Severity of anaemia is associated with bone marrow haemozoin in children exposed to Plasmodium falciparum. Br J Haematol. 2014 Mar;164(6):877–887.
  • Kiguli S, Maitland K, George EC, et al. Anaemia and blood transfusion in African children presenting to hospital with severe febrile illness. BMC Med. 2015 Feb 2;13:21.
  • Bartoloni A, Zammarchi L. Clinical aspects of uncomplicated and severe malaria.Mediterr J Hematol Infect Dis. 2012 May 4;4(1):e2012026.
  • Douglas NM, Lampah DA, Kenangalem E, et al. Major burden of severe anemia from non-falciparum malaria species in Southern Papua: a hospital-based surveillance study. PLoS Med. 2013 Dec;10(12):e1001575; discussion e1001575.
  • Bojang KA, Van Hensbroek MB, Palmer A, et al. Predictors of mortality in Gambian children with severe malaria anaemia. Ann Trop Paediatr. 1997 Dec;17(4):355–359.
  • English M, Ahmed M, Ngando C, et al. Blood transfusion for severe anaemia in children in a Kenyan hospital. Lancet. 2002 Feb 9;359(9305):494–495.
  • Takem EN, Roca A, Cunnington A. The association between malaria and non-typhoid Salmonella bacteraemia in children in sub-Saharan Africa: a literature review. Malar J. 2014 Oct;13(13):400.
  • Orf K, Cunnington AJ. Infection-related hemolysis and susceptibility to Gram-negative bacterial co-infection. Front Microbiol. 2015 Jun 30;6:666.
  • Maitland K, Ohuma EO, Mpoya A, et al. Informing thresholds for paediatric transfusion in Africa: the need for a trial. Wellcome Open Res. 2019 Aug;12(4):27.
  • Ekvall H. Malaria and anemia. Curr Opin Hematol. 2003 Mar;10(2):108–114.
  • Obonyo CO, Steyerberg EW, Oloo AJ, et al. Blood transfusions for severe malaria-related anemia in Africa: a decision analysis. Am J Trop Med Hyg. 1998 Nov;59(5):808–812.
  • Colebunders R, Ryder R, Francis H, et al. Seroconversion rate, mortality, and clinical manifestations associated with the receipt of a human immunodeficiency virus-infected blood transfusion in Kinshasa, Zaire. J Infect Dis. 1991 Sep;164(3):450–456.
  • Haldar K, Mohandas N. Malaria, erythrocytic infection, and anemia. Hematol Am Soc Hematol Educ Program. 2009;2009:87–93.
  • Were T, Hittner JB, Ouma C, et al. Suppression of RANTES in children with Plasmodium falciparum malaria. Haematologica. 2006 Oct;91(10):1396–1399.
  • Kurtzhals JA, Adabayeri V, Goka BQ, et al. Low plasma concentrations of interleukin 10 in severe malarial anaemia compared with cerebral and uncomplicated malaria. Lancet. 1998 Jun 13;351(9118):1768–1772.
  • McDevitt MA, Xie J, Ganapathy-Kanniappan S, et al. A critical role for the host mediator macrophage migration inhibitory factor in the pathogenesis of malarial anemia. J Exp Med. 2006 May 15;203(5):1185–1196.
  • Keller CC, Yamo O, Ouma C, et al. Acquisition of hemozoin by monocytes down-regulates interleukin-12 p40 (IL-12p40) transcripts and circulating IL-12p70 through an IL-10-dependent mechanism: in vivo and in vitro findings in severe malarial anemia. Infect Immun. 2006 Sep;74(9):5249–5260.
  • McGuire W, Hill AV, Allsopp CE, et al. Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria. Nature. 1994 Oct 6;371(6497):508–511.
  • Ouma C, Davenport GC, Were T, et al. Haplotypes of IL-10 promoter variants are associated with susceptibility to severe malarial anemia and functional changes in IL-10 production. Hum Genet. 2008 Dec;124(5):515–524.
  • Ouma C, Keller CC, Davenport GC, et al. A novel functional variant in the stem cell growth factor promoter protects against severe malarial anemia. Infect Immun. 2010 Jan;78(1):453–460.
  • English M, Murphy S, Mwangi I, et al. Interobserver variation in respiratory signs of severe malaria. Arch Dis Child. 1995 Apr;72(4):334–336.
  • English M, Waruiru C, Amukoye E, et al. Deep breathing in children with severe malaria: indicator of metabolic acidosis and poor outcome. Am J Trop Med Hyg. 1996 Nov;55(5):521–524.
  • Redd SC, Bloland PB, Kazembe PN, et al. Usefulness of clinical case-definitions in guiding therapy for African children with malaria or pneumonia. Lancet. 1992 Nov 7;340(8828):1140–1143.
  • O’Dempsey TJ, McArdle TF, Laurence BE, et al. Overlap in the clinical features of pneumonia and malaria in African children. Trans R Soc Trop Med Hyg. 1993 Dec;87(6):662–665.
  • English M, Punt J, Mwangi I, et al. Clinical overlap between malaria and severe pneumonia in Africa children in hospital. Trans R Soc Trop Med Hyg. 1996 Dec;90(6):658–662.
  • Allen SJ, O’Donnell A, Alexander ND, et al. Severe malaria in children in Papua New Guinea. QJM Mon J Assoc Physicians. 1996 Oct;89(10):779–788.
  • Planche T, Agbenyega T, Bedu-Addo G, et al. A prospective comparison of malaria with other severe diseases in African children: prognosis and optimization of management. Clin Infect Dis. 2003 Oct 1;37(7):890–897.
  • Maitland K, Pamba A, Fegan G, et al. Perturbations in electrolyte levels in kenyan children with severe malaria complicated by acidosis. Clin Infect Dis. 2005 Jan 1;40(1):9–16.
  • Sasi P, Burns SP, Waruiru C, et al. Metabolic acidosis and other determinants of hemoglobin-oxygen dissociation in severe childhood Plasmodium falciparum malaria. Am J Trop Med Hyg. 2007 Aug;77(2):256–260.
  • Herdman MT, Sriboonvorakul N, Leopold SJ, et al. The role of previously unmeasured organic acids in the pathogenesis of severe malaria. Crit Care. 2015 Sep 7;19:317.
  • Leopold SJ, Ghose A, Allman EL, et al. Identifying the components of acidosis in patients with severe plasmodium falciparum malaria using metabolomics. J Infect Dis. 2019 May 5;219(11):1766–1776.
  • Berkley JA, Lowe BS, Mwangi I, et al. Bacteremia among children admitted to a rural hospital in Kenya. N Engl J Med. 2005 Jan 6;352(1):39–47.
  • Church J, Maitland K. Invasive bacterial co-infection in African children with Plasmodium falciparum malaria: a systematic review. BMC Med. 2014 Feb;19(12):31.
  • Berkley J, Mwarumba S, Bramham K, et al. Bacteraemia complicating severe malaria in children. Trans R Soc Trop Med Hyg. 1999 Jun;93(3):283–286.
  • Gómez-Pérez GP, van Bruggen R, Grobusch MP, et al. Plasmodium falciparum malaria and invasive bacterial co-infection in young African children: the dysfunctional spleen hypothesis. Malar J. 2014 Aug 26;13:335.
  • Were T, Davenport GC, Hittner JB, et al. Bacteremia in Kenyan children presenting with malaria. J Clin Microbiol. 2011 Feb;49(2):671–676.
  • Bronzan RN, Taylor TE, Mwenechanya J, et al. Bacteremia in Malawian children with severe malaria: prevalence, etiology, HIV coinfection, and outcome. J Infect Dis. 2007 Mar 15;195(6):895–904.
  • Otieno RO, Ouma C, Ong’echa JM, et al. Increased severe anemia in HIV-1-exposed and HIV-1-positive infants and children during acute malaria. AIDS. 2006 Jan 9;20(2):275–280.
  • Malamba S, Hladik W, Reingold A, et al. The effect of HIV on morbidity and mortality in children with severe malarial anaemia. Malar J. 2007 Oct 31;6(1):143.
  • Imani PD, Musoke P, Byarugaba J, et al. Human immunodeficiency virus infection and cerebral malaria in children in Uganda: a case-control study. BMC Pediatr. 2011 Jan 14;11(1):5.
  • Whitworth J, Morgan D, Quigley M, et al. Effect of HIV-1 and increasing immunosuppression on malaria parasitaemia and clinical episodes in adults in rural Uganda: a cohort study. Lancet. 2000 Sep 23;356(9235):1051–1056.
  • French N, Nakiyingi J, Lugada E, et al. Increasing rates of malarial fever with deteriorating immune status in HIV-1-infected Ugandan adults. AIDS. 2001 May 4;15(7):899–906.
  • Grimwade K, French N, Mbatha DD, et al. HIV infection as a cofactor for severe falciparum malaria in adults living in a region of unstable malaria transmission in South Africa. AIDS. 2004 Feb 20;18(3):547–554.
  • Patnaik P, Jere CS, Miller WC, et al. Effects of HIV-1 serostatus, HIV-1 RNA concentration, and CD4 cell count on the incidence of malaria infection in a cohort of adults in rural Malawi. J Infect Dis. 2005 Sep 15;192(6):984–991.
  • Cohen C, Karstaedt A, Frean J, et al. Increased prevalence of severe malaria in HIV-infected adults in South Africa. Clin Infect Dis. 2005 Dec 1;41(11):1631–1637.
  • Hendriksen ICE, Ferro J, Montoya P, et al. Diagnosis, clinical presentation, and in-hospital mortality of severe malaria in HIV-coinfected children and adults in Mozambique. Clin Infect Dis. 2012 Oct;55(8):1144–1153.
  • Hochman SE, Madaline TF, Wassmer SC, et al. Fatal pediatric cerebral malaria is associated with intravascular monocytes and platelets that are increased with HIV coinfection. mBio. 2015 Sep 22;6(5):e01390–01315.
  • van Eijk AM, Ayisi JG, Ter Kuile FO, et al. Malaria and human immunodeficiency virus infection as risk factors for anemia in infants in Kisumu, western Kenya. Am J Trop Med Hyg. 2002 Jul;67(1):44–53.
  • Angelo KM, Libman M, Caumes E, et al. Malaria after international travel: a GeoSentinel analysis, 2003–2016. Malar J. 2017 Jul 20;16(1):293.
  • WHO European health information at your fingertips. [Internet]. [cited 2019 Sep 28]. Available from: https://gateway.euro.who.int/en/indicators/hfa_330-2092-number-of-deaths-from-malaria/
  • Romi R, Boccolini D, D’Amato S, et al. Incidence of malaria and risk factors in Italian travelers to malaria endemic countries. Travel Med Infect Dis. 2010 May;8(3):144–154.
  • Checkley AM, Smith A, Smith V, et al. Risk factors for mortality from imported falciparum malaria in the United Kingdom over 20 years: an observational study. BMJ. 2012 Mar;27(344):e2116.
  • Malaria - NICE CKS [Internet]. National institute for health and care excellence. [cited 2019 Jul 28]. Available from: https://cks.nice.org.uk/malaria
  • Gérardin P, Rogier C, Ka AS, et al. Prognostic value of thrombocytopenia in African children with falciparum malaria. Am J Trop Med Hyg. 2002 Jun;66(6):686–691.
  • Obonyo CO, Vulule J, Akhwale WS, et al. In-hospital morbidity and mortality due to severe malarial anemia in western Kenya. Am J Trop Med Hyg. 2007 Dec;77(6 Suppl):23–28.
  • Lampah DA, Yeo TW, Malloy M, et al. Severe malarial thrombocytopenia: a risk factor for mortality in Papua, Indonesia. J Infect Dis. 2015 Feb 15;211(4):623–634.
  • Molyneux ME, Taylor TE, Wirima JJ, et al. Clinical features and prognostic indicators in paediatric cerebral malaria: a study of 131 comatose Malawian children. Q J Med. 1989 May;71(265):441–459.
  • Erdman LK, Petes C, Lu Z, et al. Chitinase 3-like 1 is induced by Plasmodium falciparum malaria and predicts outcome of cerebral malaria and severe malarial anaemia in a case-control study of African children. Malar J. 2014 Jul 21;13:279.
  • Conroy AL, Glover SJ, Hawkes M, et al. Angiopoietin-2 levels are associated with retinopathy and predict mortality in Malawian children with cerebral malaria: a retrospective case-control study. Crit Care Med. 2012 Mar;40(3):952–959.
  • Lovegrove FE, Tangpukdee N, Opoka RO, et al. Serum angiopoietin-1 and −2 levels discriminate cerebral malaria from uncomplicated malaria and predict clinical outcome in African children. PLoS One. 2009;4(3):e4912.
  • Lopansri BK, Anstey NM, Weinberg JB, et al. Low plasma arginine concentrations in children with cerebral malaria and decreased nitric oxide production. Lancet. 2003 Feb 22;361(9358):676–678.