1,400
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Characterization of Schu S4 aro mutants as live attenuated tularemia vaccine candidates

, ORCID Icon, , , , , & ORCID Icon show all
Pages 283-294 | Received 13 Nov 2019, Accepted 06 Mar 2020, Published online: 02 Apr 2020

References

  • Saslaw S, Eigelsbach HT, Prior JA, et al. Tularemia vaccine study. II. Respiratory challenge. Arch Intern Med. 1961;107::702–714.
  • Saslaw S, Eigelsbach HT, Wilson HE, et al. Tularemia vaccine study. I. Intracutaneous challenge. Arch Intern Med. 1961;107::689–701.
  • Dienst FT Jr.:. Tularemia: a perusal of three hundred thirty-nine cases. J La State Med Soc. 1963;115::114–127.
  • Tarnvik A, Berglund L. Tularaemia. Eur Respir J. 2003;21(2):361–373.
  • Dennis DT, Inglesby TV, Henderson DA, et al. Tularemia as a biological weapon: medical and public health management. JAMA. 2001;285(21):2763–2773. .
  • Sjostedt A. Tularemia: history, epidemiology, pathogen physiology, and clinical manifestations. Ann N Y Acad Sci. 2007;1105:1–29.
  • Olsufiev NG, Emelyanova OS, Dunayeva TN. Comparative study of strains of B. tularense in the old and new world and their taxonomy. J Hyg Epidemiol Microbiol Immunol. 1959;3::138–149.
  • Staples JE, Kubota KA, Chalcraft LG, et al. Epidemiologic and molecular analysis of human tularemia, United States, 19642004. Emerg Infect Dis. 2007;1105(1):1113–1118.
  • Santiago AE, Mann BJ, Qin A, et al. Characterization of Francisella tularensis Schu S4 defined mutants as live attenuated vaccine candidates. Pathog Dis. 2015;73(6). DOI:https://doi.org/10.1093/femspd/ftv036
  • Karki HS, Ham JH. The roles of the shikimate pathway genes, aroA and aroB, in virulence, growth, and UV tolerance of Burkholderia glumae strain 411gr-6. Mol Plant Pathol. 2014. DOI:https://doi.org/10.1111/mpp.12147
  • Avitia-Dominguez C, Sierra-Campos E, JM S-P, et al. Inhibition and biochemical characterization of methicillin-resistant Staphylococcus aureus shikimate dehydrogenase: an in silico and kinetic study. Molecules. 2014;19(4):4491–4509.
  • Charles IG, Lamb HK, Pickard D, et al. Isolation, characterization and nucleotide sequences of the aroC genes encoding chorismate synthase from Salmonella typhi and Escherichia coli. J Gen Microbiol. 1990;136(2):353–358.
  • Hoiseth SK, Stocker BA. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature. 1981;291(5812):238–239.
  • Hone DM, Harris AM, Chatfield S, et al. Construction of genetically defined double aro mutants of Salmonella typhi. Vaccine. 1991;9(11):810–816.
  • Hone DM, Tacket CO, Harris AM, et al. Evaluation in volunteers of a candidate live oral attenuated Salmonella typhi vector vaccine. J Clin Invest. 1992;90(2):412–420.
  • Karlsson J, Prior RG, Williams K, et al. Sequencing of the Francisella tularensis strain Schu 4 genome reveals the shikimate and purine metabolic pathways, targets for the construction of a rationally attenuated auxotrophic vaccine. Microb Comp Genomics. 2000;5(1):25–39.
  • Balzano PM, Cunningham AL, Grassel C, et al. Deletion of the major facilitator superfamily transporter fptB alters host cell interactions and attenuates virulence of type A francisella tularensis. Infect Immun. 2018;86:3.
  • Qin A, Mann BJ. Identification of transposon insertion mutants of Francisella tularensis tularensis strain Schu S4 deficient in intracellular replication in the hepatic cell line HepG2. BMC Microbiol. 2006;6:69.
  • Chamberlain RE. Evaluation of live tularemia vaccine prepared in a chemically defined medium. Appl Microbiol. 1965;13::232–235.
  • Santiago AE, Cole LE, Franco A, et al. Characterization of rationally attenuated Francisella tularensis vaccine strains that harbor deletions in the guaA and guaB genes. Vaccine. 2009;27(18):2426–2436.
  • Gibson-Corley KN, Olivier AK, Meyerholz DK. Principles for valid histopathologic scoring in research. Vet Pathol. 2013;50(6):1007–1015.
  • Cole LE, Elkins KL, Michalek SM, et al. Immunologic consequences of Francisella tularensis live vaccine strain infection: role of the innate immune response in infection and immunity. J Iimmunol. 2006;176(11):6888–6899.
  • Andreasen C, Powell DA, Carbonetti NH. Pertussis toxin stimulates IL-17 production in response to Bordetella pertussis infection in mice. PloS One. 2009;4(9):e7079.
  • De Pascalis R, Chou AY, Bosio CM, et al. Development of functional and molecular correlates of vaccine-induced protection for a model intracellular pathogen, F. tularensis LVS. PLoS Pathog. 2012;8(1):e1002494.
  • Qin A, Scott DW, Mann BJ. Francisella tularensis subsp. tularensis Schu S4 disulfide bond formation protein B, but not an RND-type efflux pump, is required for virulence. Infect Immun. 2008;76(7):3086–3092.
  • De Pascalis R, Chou AY, Ryden P, et al. Models derived from in vitro analyses of spleen, liver, and lung leukocyte functions predict vaccine efficacy against the Francisella tularensis Live Vaccine Strain (LVS). MBio. 2014;5(2):e00936.
  • Hall JD, Woolard MD, Gunn BM, et al. Infected-host-cell repertoire and cellular response in the lung following inhalation of Francisella tularensis Schu S4, LVS, or U112. Infect Immun. 2008;76(12):5843–5852.
  • Woolard MD, Hensley LL, Kawula TH, et al. Respiratory Francisella tularensis live vaccine strain infection induces Th17 cells and prostaglandin E2, which inhibits generation of gamma interferon-positive T cells. Infect Immun. 2008;76(6):2651–2659.
  • Bokhari SM, Kim KJ, Pinson DM, et al. NK cells and gamma interferon coordinate the formation and function of hepatic granulomas in mice infected with the Francisella tularensis live vaccine strain. Infect Immun. 2008;76(4):1379–1389.
  • Mares CA, Ojeda SS, Morris EG, et al. Initial delay in the immune response to Francisella tularensis is followed by hypercytokinemia characteristic of severe sepsis and correlating with upregulation and release of damage-associated molecular patterns. Infect Immun. 2008;76(7):3001–3010.
  • Sharma J, Mares CA, Li Q, et al. Features of sepsis caused by pulmonary infection with Francisella tularensis Type A strain. Microb Pathog. 2011;51(1–2):39–47.
  • Bosio CM, Bielefeldt-Ohmann H, Belisle JT. Active suppression of the pulmonary immune response by Francisella tularensis Schu4. J Iimmunol. 2007;178(7):4538–4547.
  • Peek J, Castiglione G, Shi T, et al. Isolation and molecular characterization of the shikimate dehydrogenase domain from the Toxoplasma gondii AROM complex. Mol Biochem Parasitol. 2014;194(1–2):16–19.
  • Pechous RD, McCarthy TR, Mohapatra NP, et al. A Francisella tularensis Schu S4 purine auxotroph is highly attenuated in mice but offers limited protection against homologous intranasal challenge. PloS One. 2008;3(6):e2487.
  • Qin A, Scott DW, Rabideau MM, et al. Requirement of the CXXC motif of novel Francisella infectivity potentiator protein B FipB, and FipA in virulence of F. tularensis subsp. tularensis. PloS One. 2011;6(9):e24611.
  • Qin A, Scott DW, Thompson JA, et al. Identification of an essential Francisella tularensis subsp. tularensis virulence factor. Infect Immun. 2009;77(1):152–161.
  • Rockx-Brouwer D, Chong A, Wehrly TD, et al. Low dose vaccination with attenuated Francisella tularensis strain SchuS4 mutants protects against tularemia independent of the route of vaccination. PloS One. 2012;7(5):e37752.
  • Shen H, Harris G, Chen W, et al. Molecular immune responses to aerosol challenge with Francisella tularensis in mice inoculated with live vaccine candidates of varying efficacy. PloS One. 2010;5(10):e13349.
  • Twine S, Bystrom M, Chen W, et al. A mutant of Francisella tularensis strain SCHU S4 lacking the ability to express a 58-kilodalton protein is attenuated for virulence and is an effective live vaccine. Infect Immun. 2005;73(12):8345–8352. .
  • Twine S, Shen H, Harris G, et al. BALB/c mice, but not C57BL/6 mice immunized with a ΔclpB mutant of Francisella tularensis subspecies tularensis are protected against respiratory challenge with wild-type bacteria: association of protection with post-vaccination and post-challenge immune responses. Vaccine. 2012;30(24):3634–3645.
  • Conlan JW, Shen H, Kuolee R, et al. Aerosol-, but not intradermal-immunization with the live vaccine strain of Francisella tularensis protects mice against subsequent aerosol challenge with a highly virulent type A strain of the pathogen by an αβ T cell- and interferon γ- dependent mechanism. Vaccine. 2005;23(19):2477–2485.
  • Tian D, Uda A, Park ES, et al. Evaluation of Francisella tularensis DeltapdpC as a candidate live attenuated vaccine against respiratory challenge by a virulent SCHU P9 strain of Francisella tularensis in a C57BL/6J mouse model. Microbiol Immunol. 2018;62(1):24–33. .
  • O’Malley KJ, Bowling JD, Stinson E, et al. Aerosol prime-boost vaccination provides strong protection in outbred rabbits against virulent type A Francisella tularensis. PloS One. 2018;13(10):e0205928.
  • Reed DS, Smith LP, Cole KS, et al. Live attenuated mutants of Francisella tularensis protect rabbits against aerosol challenge with a virulent type A strain. Infect Immun. 2014;82(5):2098–2105.
  • Roberts LM, Powell DA, Frelinger JA. Adaptive immunity to Francisella tularensis and considerations for vaccine development. Front Cell Infect Microbiol. 2018;8:115.
  • De Pascalis R, Hahn A, Brook HM, et al. A panel of correlates predicts vaccine-induced protection of rats against respiratory challenge with virulent Francisella tularensis. PloS One. 2018;13(5):e0198140.
  • Golovliov I, Lindgren H, Eneslatt K, et al. An in vitro co-culture mouse model demonstrates efficient vaccine- mediated control in francisella tularensis schu s4 and identifies nitric oxide as a predictor of efficacy. Front. Cell Infect. Micro. 2016;6:152.
  • Garcia-Ortiz A, Serrador JM. Nitric oxide signaling in T cell-mediated immunity. Trends Mol Med. 2018;24(4):412–427.
  • Griffin AJ, Crane DD, Wehrly TD, et al. Alternative activation of macrophages and induction of arginase are not components of pathogenesis mediated by Francisella species. PloS One. 2013;8(12):e82096.
  • Covian C, Fernandez-Fierro A, Retamal-Diaz A, et al. BCG-induced cross-protection and development of trained immunity: implication for vaccine design. Front Immunol. 2019;10:2806.
  • Maier TM, Havig A, Casey M, et al. Construction and characterization of a highly efficient Francisella shuttle plasmid. Appl Environ Microbiol. 2004;70(12):7511–7519.