3,065
Views
10
CrossRef citations to date
0
Altmetric
Review Article

Mechanisms underlying of antiretroviral drugs in different cellular reservoirs with a focus on macrophages

, , &
Pages 400-413 | Received 12 Oct 2019, Accepted 28 Jan 2020, Published online: 06 May 2020

References

  • Quinn TC. HIV epidemiology and the effects of antiviral therapy on long-term consequences. AIDS. 2008 Sep;22(Suppl 3):S7–12. Review.
  • Flexner C. HIV drug development: the next 25 years. Nat Rev Drug Discov. 2007 Dec;6(12):959–966. Review.
  • Gao Y, Kraft JC, Yu D, et al. Recent developments of nanotherapeutics for targeted and long-acting, combination HIV chemotherapy. Eur J Pharm Biopharm. 2018Apr17. pii:S0939-6411(18)30157-7. doi: https://doi.org/10.1016/j.ejpb.2018.04.014. [ Epub ahead of print] Review.
  • Tomkowicz B, Lee C, Ravyn V, et al. The Src kinase Lyn is required for CCR5 signaling in response to MIP-1beta and R5 HIV-1 gp120 in human macrophages. Blood. 2006 Aug 15;108(4):1145–1150. Epub 2006 Apr 18.
  • Herbein G, Coaquette A, Perez-Bercoff D, et al. Macrophage activation and HIV infection: can the Trojan horse turn into a fortress? Curr Mol Med. 2002 Dec 2;8:723–738. Review.
  • Aquaro S, Svicher V, Schols D, et al. Mechanisms underlying activity of antiretroviral drugs in HIV-1-infected macrophages: new therapeutic strategies. J Leukoc Biol. 2006 Nov;80(5):1103–1110. Epub 2006 Aug 24. Review.
  • Aquaro S, Panti S, Caroleo MC, et al. Primary macrophages infected by human immunodeficiency virus trigger CD95-mediated apoptosis of uninfected astrocytes. J Leukoc Biol. 2000 Sep;68(3):429–35.8.
  • Perno CF, Svicher V, Schols D, et al. Therapeutic strategies towards HIV-1 infection in macrophages. Antiviral Res. 2006 Sep;71(2–3):293–300. Epub 2006 Jun 9. Review.
  • Cihlar T, Fordyce M. Current status and prospects of HIV treatment. Curr Opin Virol. 2016 Jun;18:50–56. Epub 2016 Mar 28. Review.
  • Lorenzo-Redondo R, Fryer HR, Bedford T, et al. Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature. 2016 Feb 4;530(7588):51–56. Epub 2016 Jan 27.
  • Honeycutt JB, Thayer WO, Baker CE, et al. HIV persistence in tissue macrophages of humanized myeloid-only mice during antiretroviral therapy. Nat Med. 2017 May;23(5):638–643.
  • Araínga M, Edagwa B, Mosley RL, et al. A mature macrophage is a principal HIV-1 cellular reservoir in humanized mice after treatment with long acting antiretroviral therapy. Retrovirology. 2017;14:17.
  • Konvalinka J, Kräusslich HG, Müller B. Retroviral proteases and their roles in virion maturation. Virology. 2015 May:479–480: 403–17. Epub 2015 Mar 26. Review. Doi: https://doi.org/10.1016/j.virol.2015.03.021.
  • Alexaki A, Liu Y, Wigdahll B. Cellular reservoirs of HIV-1 and their role in viral persistence. Curr HIV Res. 2008;6:388–400.
  • DiNapoli SR, Ortiz AM, Wu F, et al. Tissue-resident macrophages can contain replication-competent virus in antiretroviral-naive, SIV-infected Asian macaques. JCI Insight. 2017 Feb 23;2(4):e91214.
  • Murphy J, Summer R, Wilson AA, et al. The prolonged life-span of alveolar macrophages. Am J Respir Cell Mol Biol. 2008 Apr;38(4):380–385. Epub 2008 Jan 10.
  • Schnell G, Joseph S, Spudich S, et al. HIV-1 replication in the central nervous system occurs in two distinct cell types. PLoS Pathog. 2011 Oct 7;10:e1002286.
  • Soulas C, Conerly C, Kim WK, et al. Recently infiltrating MAC387(+) monocytes/macrophages a third macrophage population involved in SIV and HIV encephalitic lesion formation. Am J Pathol. 2011 May;178(5):2121–2135.
  • Gras G, Kaul M. Molecular mechanisms of neuroinvasion by monocytes-macrophages in HIV-1 infection. Retrovirology. 2010 Apr 7;7:30.
  • Law KM, Satija N, Esposito AM, et al. Cell-to-cell spread of HIV and viral pathogenesis. Adv Virus Res. 2016;95:43–85. Epub 2016 Apr 4. Review.
  • Pelchen-Matthews A, Kramer B, Marsh M. Infectious HIV-1 assembles in late endosomes in primary macrophages. J Cell Biol. 2003 Aug 4;162(3):443–455. Epub 2003 Jul 28.
  • Pelchen-Matthews A, Raposo G, Marsh M. Endosomes, exosomes and Trojan viruses. Trends Microbiol. 2004 Jul;12(7):310–316. Review.
  • Raposo G, Moore M, Innes D, et al. Human macrophages accumulate HIV-1 particles in MHC II compartments. Traffic. 2002 Oct;3(10):718–729.
  • Borrajo A, Ranazzi A, Pollicita M, et al. Effects of amprenavir on HIV-1 maturation, production and infectivity following drug withdrawal in chronically-infected monocytes/macrophages. Viruses. 2017 Sep 28;9(10):pii: E277.
  • Lambotte O, Taoufik Y, de Goër MG, et al. Detection of infectious HIV in circulating monocytes from patients on prolonged highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2000 Feb 1;23(2):114–119.
  • Zhu T, Muthui D, Holte S, et al. Evidence for human immunodeficiency virus type 1 replication in vivo in CD14(+) monocytes and its potential role as a source of virus in patients on highly active antiretroviral therapy. J Virol. 2002 Jan;76(2):707–716.
  • Kumar A, Abbas W, Herbein G. HIV-1 latency in monocytes/macrophages. Viruses. 2014 Apr 22;6(4):1837–1860. Review.
  • Cassol E, Cassetta L, Rizzi C, et al. M2a polarization of human monocyte-derived macrophages inhibits HIV-1 replication by distinct mechanisms. J Immunol. 2009 May 15;182(10):6237–6246.
  • Herbein G, Varin A. The macrophage in HIV-1 infection: from activation to deactivation? Retrovirology. 2010 Apr 9;7:33.
  • Perno CF, Svicher V, Ceccherini-Silberstein F. Novel drug resistance mutations in HIV: recognition and clinical relevance. AIDS Rev. 2006 Oct-Dec;8(4):179–190. Review.
  • Smith SJ, Zhao XZ, Burke TR, et al. Efficacies of Cabotegravir and Bictegravir against drug-resistant HIV-1 integrase mutants. Retrovirology. 2018 May 16;15(1):37.
  • Fletcher CV, Staskus K, Wietgrefe SW, et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2307–2312.
  • Aquaro S, Balestra E, Cenci A, et al. HIV infection in macrophage: role of long-lived cells and related therapeutical strategies. J Biol Regul Homeost Agents. 1997 Jan-Jun;11(1–2):69–73. Review.
  • Aquaro S, Caliò R, Balestra E, et al. Clinical implications of HIV dynamics and drug resistance in macrophages. J Biol Regul Homeost Agents. 1998;12(1–2 Suppl): 23–27. Review.
  • Sarafianos SG, Marchand B, Das K, et al. Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J Mol Biol. 2009 Jan 23;385(3):693–713. Epub 2008 Nov 3. Review.
  • Orkin C, Squires KE, Molina JM, et al. DRIVE-AHEAD Study Group. Doravirine/lamivudine/tenofovir disoproxil fumarate is non-inferior to efavirenz/emtricitabine/tenofovir disoproxil fumarate in treatment-naive adults with human immunodeficiency virus-1 infection: week 48 results of the DRIVE-AHEAD trial. Clin Infect Dis. 2018 Aug31. DOI:https://doi.org/10.1093/cid/ciy540 Epub ahead of print
  • Darwish M, Bond M, Yang R, et al. Evaluation of the potential for pharmacokinetic drug-drug interaction between armodafinil and carbamazepine in healthy adults. Clin Ther. 2015 Feb 1;37(2):325–337. Epub 2014 Oct 16.
  • Khalilieh S, Yee KL, Sanchez RI, et al. Results of a Doravirine-Atorvastatin Drug-Drug Interaction Study. Antimicrob Agents Chemother. 2017 Jan 24;61(2):pii: e01364-16. Print 2017 Feb.
  • Wilby KJ, Eissa NA. Clinical Pharmacokinetics and Drug Interactions of Doravirine. Eur J Drug Metab Pharmacokinet. 2018 Jul 25. Epub ahead of print. DOI:https://doi.org/10.1007/s13318-018-0497-3
  • Khalilieh SG, Yee KL, Sanchez RI, et al. Multiple doses of rifabutin reduce exposure of doravirine in healthy subjects. J Clin Pharmacol. 2018 May 3. Epub ahead of print. DOI:https://doi.org/10.1002/jcph.1103
  • Yee KL, Khalilieh SG, Sanchez RI, et al. The effect of single and multiple doses of rifampin on the pharmacokinetics of doravirine in healthy subjects. Clin Drug Investig. 2017 Jul;37(7):659–667.
  • Behm MO, Yee KL, Liu R, et al. The effect of food on doravirine bioavailability: results from two pharmacokinetic studies in healthy subjects. Clin Drug Investig. 2017 Jun;37(6):571–579.
  • Behm MO, Yee KL, Fan L, et al. Effect of gender and age on the relative bioavailability of doravirine: results of a Phase I trial in healthy subjects. Epub 2017 Feb 16 Antivir Ther. 2017;224:337–344.
  • Molina JM, Squires K, Sax PE, et al. Doravirine versus ritonavir-boosted darunavir in antiretroviral-naive adults with hiv-1 (drive-forward): 96-week results of a randomised, double-blind, non-inferiority, phase 3 trial. Lancet Hiv. 2020 Jan;7(1):e16-e26.
  • Huber AD, Michailidis E, Schultz ML, et al. SAMHD1 has differential impact on the efficacies of HIV nucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother. 2014 Aug;58(8):4915–4919.
  • Laguette N, Rahm N, Sobhian B, et al. Evolutionary and functional analyses of the interaction between the myeloid restriction factor SAMHD1 and the lentiviral Vpx protein. Cell Host Microbe. 2012 Feb 16;11(2):205–217.
  • Mlcochova P, Sutherland KA, Watters SA, et al. A G1-like state allows HIV-1 to bypass SAMHD1 restriction in macrophages. Embo J. 2017 Mar 1;36(5):604–616.
  • Mlcochova P, Caswell SJ, Taylor IA, et al. DNA damage induced by topoisomerase inhibitors activates SAMHD1 and blocks HIV-1 infection of macrophages. Embo J. 2018 Jan 4;37(1):50–62.
  • Jáuregui P, Landau NR. DNA damage induces a SAMHD1-mediated block to the infection of macrophages by HIV-1. Sci Rep. 2018 Mar 7;8(1):4153.
  • Wensing AM, van Maarseveen NM, Nijhuis M. Fifteen years of HIV Protease Inhibitors: raising the barrier to resistance. Antiviral Res. 2010 Jan;85(1):59–74. Epub 2009 Oct 22. Review.
  • Subbaiah MAM, Meanwell NA, Kadow JF. Design strategies in the prodrugs of HIV-1 protease inhibitors to improve the pharmaceutical properties. Eur J Med Chem. 2017 Oct 20;139:865–883.
  • Pommier Y, Johnson AA, Marchand C. Integrase inhibitors to treat HIV/AIDS. Nat Rev Drug Discov. 2005 Mar;4(3):236–248. Review.
  • Tsurutani N, Kubo M, Maeda Y, et al. Identification of critical amino acid residues in human immunodeficiency virus type 1 IN required for efficient proviral DNA formation at steps prior to integration in dividing and nondividing cells. J Virol. 2000 May;74(10):4795–4806.
  • Zhu K, Dobard C, Chow SA. Requirement for integrase during reverse transcription of human immunodeficiency virus type 1 and the effect of cysteine mutations of integrase on its interactions with reverse transcriptase. J Virol. 2004 May;78(10):5045–5055.
  • Scopelliti F, Pollicita M, Ceccherini-Silberstein F, et al. Comparative antiviral activity of integrase inhibitors in human monocyte-derived macrophages and lymphocytes. Antiviral Res. 2011 Nov;92(2):255–261. Epub 2011 Aug 16.
  • Pollicita M, Surdo M, Di Santo F, et al. Comparative replication capacity of raltegravir-resistant strains and antiviral activity of the new-generation integrase inhibitor dolutegravir in human primary macrophages and lymphocytes. J Antimicrob Chemother. 2014 Sep;69(9):2412–2419. Epub 2014 May 23.
  • Yoshinaga T, Seki T, Miki S, et al. Novel secondary mutations C56S and G149A confer resistance to HIV-1 integrase strand transfer inhibitors. Antiviral Res. 2018Apr;152:1–9.
  • Neogi U, Singh K, Aralaguppe SG, et al. Ex-vivo antiretroviral potency of newer integrase strand transfer inhibitors cabotegravir and bictegravir in HIV type 1 non-B subtypes. AIDS. 2018 Feb 20;32(4):469–476.
  • Lalezari JP, DeJesus E, Northfelt DW, et al. A controlled Phase II trial assessing three doses of enfuvirtide (T-20) in combination with abacavir, amprenavir, ritonavir and efavirenz in non-nucleoside reverse transcriptase inhibitor-naive HIV-infected adults. Antivir Ther. 2003. 8. Aug(4):279–287.
  • Eron JJ, Gulick RM, Bartlett JA, et al. Short-term safety and antiretroviral activity of T-1249, a second-generation fusion inhibitor of HIV. J Infect Dis. 2004 Mar 15;189(6):1075–1083. Epub 2004 Mar 2.
  • Lalezari J, Thompson M, Kumar P, et al. Antiviral activity and safety of 873140, a novel CCR5 antagonist, during short-term monotherapy in HIV-infected adults. AIDS. 2005 Sep 23;19(14):1443–1448.
  • Dwyer JJ, Wilson KL, Davison DK, et al. Design of helical, oligomeric HIV-1 fusion inhibitor peptides with potent activity against enfuvirtide-resistant virus. Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12772–12777. Epub 2007 Jul 19.
  • He Y, Cheng J, Lu H, et al. Potent HIV fusion inhibitors against Enfuvirtide-resistant HIV-1 strains. Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16332–16337. Epub 2008 Oct 13.
  • Reeves JD, Gallo SA, Ahmad N, et al. Sensitivity of HIV-1 to entry inhibitors correlates with envelope/coreceptor affinity, receptor density, and fusion kinetics. Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16249–16254. Epub 2002 Nov 20.
  • Mink M, Mosier SM, Janumpalli S, et al. Impact of human immunodeficiency virus type 1 gp41 amino acid substitutions selected during enfuvirtide treatment on gp41 binding and antiviral potency of enfuvirtide in vitro. J Virol. 2005 Oct;79(19):12447–12454.
  • Wei X, Decker JM, Liu H, et al. Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother. 2002 Jun;46(6):1896–1905.
  • Miller MD, Hazuda DJ. HIV resistance to the fusion inhibitor enfuvirtide: mechanisms and clinical implications. Drug Resist Updat. 2004 Apr;7(2):89–95.
  • Reeves JD, Lee FH, Miamidian JL, et al. Enfuvirtide resistance mutations: impact on human immunodeficiency virus envelope function, entry inhibitor sensitivity, and virus neutralization. J Virol. 2005 Apr;79(8):4991–4999.
  • Aquaro S, D’Arrigo R, Svicher V, et al. Specific mutations in HIV-1 gp41 are associated with immunological success in HIV-1-infected patients receiving enfuvirtide treatment. J Antimicrob Chemother. 2006 Oct;58(4):714–722. Epub 2006 Aug 5.
  • Greenberg M, Cammack N, Salgo M, et al. HIV fusion and its inhibition in antiretroviral therapy. Rev Med Virol. 2004 Sep-Oct; 14 (5): 321–337. Review;():.
  • Alessandri-Gradt E, Charpentier C, Leoz M, et al. Impact of natural polymorphisms of HIV-1 non-group M on genotypic susceptibility to the attachment inhibitor fostemsavir. J Antimicrob Chemother. 2018 Oct 1;73(10):2716–2720.
  • Nettles RE, Schürmann D, Zhu L, et al. Pharmacodynamics, safety, and pharmacokinetics of BMS-663068, an oral HIV-1 attachment inhibitor in HIV-1-infected subjects. J Infect Dis. 2012 Oct 1;206(7):1002–1011. Epub 2012 Aug 14.
  • Lalezari JP, Latiff GH, Brinson C, et al., AI438011 study team. Safety and efficacy of the HIV-1 attachment inhibitor prodrug BMS-663068 in treatment-experienced individuals: 24 week results of AI438011, a phase 2b, randomised controlled trial. Lancet HIV. 2015 Oct 2;10:e427–37. DOI:https://doi.org/10.1016/S2352-3018(15)00177-0. Epub 2015 Sep 1
  • Thompson M, Lalezari JP, Kaplan R, et al., AI438011 study team. Safety and efficacy of the HIV-1 attachment inhibitor prodrug fostemsavir in antiretroviral-experienced subjects: week 48 analysis of AI438011, a Phase IIb, randomized controlled trial. Antivir Ther. 2017;22(3):215–223. Epub 2016 Dec 6
  • Dragic T, Trkola A, Thompson DA, et al. A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5639–5644.
  • Jin J, Momboisse F, Boncompain G, et al. CCR5 adopts three homodimeric conformations that control cell surface delivery. Sci Signal. 2018 May 8;11(529):pii: eaal2869.
  • Garcia-Perez J, Rueda P, Alcami J, et al. Allosteric model of maraviroc binding to CC chemokine receptor 5 (CCR5). J Biol Chem. 2011 Sep 23;286(38):33409–33421. Epub 2011 Jul 20.
  • Garcia-Perez J, Rueda P, Staropoli I, et al. New insights into the mechanisms whereby low molecular weight CCR5 ligands inhibit HIV-1 infection. J Biol Chem. 2011 Feb 18;286(7):4978–4990. Epub 2010 Nov 30.
  • Westby M, van der Ryst E. CCR5 antagonists: host-targeted antiviral agents for the treatment of HIV infection, 4 years on. Antivir Chem Chemother. 2010 Apr 14;20(5):179–192. Review.
  • Westby M, Smith-Burchnell C, Mori J, et al. Reduced maximal inhibition in phenotypic susceptibility assays indicates that viral strains resistant to the CCR5 antagonist maraviroc utilize inhibitor-bound receptor for entry. J Virol. 2007 Mar;81(5):2359–2371. Epub 2006 Dec 20.
  • Roche M, Jakobsen MR, Ellett A, et al. HIV-1 predisposed to acquiring resistance to maraviroc (MVC) and other CCR5 antagonists in vitro has an inherent, low-level ability to utilize MVC-bound CCR5 for entry. Retrovirology. 2011 Nov 7;8: 89.
  • Tilton JC, Wilen CB, Didigu CA, et al. A maraviroc-resistant HIV-1 with narrow cross-resistance to other CCR5 antagonists depends on both N-terminal and extracellular loop domains of drug-bound CCR5. J Virol. 2010 Oct;84(20):10863–10876. Epub 2010 Aug 11.
  • Cuzin L, Trabelsi S, Delobel P, et al.,ANRS 145 MARIMUNO Study group. Maraviroc intensification of stable antiviral therapy in HIV-1-infected patients with poor immune restoration: MARIMUNO-ANRS 145 study. J Acquir Immune Defic Syndr. 2012 Dec 15; 61: 5. 557–564.
  • Hunt PW, Shulman NS, Hayes TL, et al. The immunologic effects of maraviroc intensification in treated HIV-infected individuals with incomplete CD4+ T-cell recovery: a randomized trial. Blood. 2013 Jun 6;121(23):4635–4646. Epub 2013 Apr 15.
  • Ananworanich J, Chomont N, Fletcher JL, et al. Markers of HIV reservoir size and immune activation after treatment in acute HIV infection with and without raltegravir and maraviroc intensification. J Virus Erad. 2015;1(2):116–122. Epub 2015 Apr 1.
  • Cillo AR, Hilldorfer BB, Lalama CM, et al. Virologic and immunologic effects of adding maraviroc to suppressive antiretroviral therapy in individuals with suboptimal CD4+ T-cell recovery. AIDS. 2015 Oct 23;29(16):2121–2129.
  • van Lelyveld SF, Drylewicz J, Krikke M, et al.; MIRS study group. Maraviroc intensification of cART in patients with suboptimal immunological recovery: a 48-week, placebo-controlled randomized trial. PLoS One. 2015 Jul 24;10(7):e0132430. eCollection 2015.
  • Chéret A, Nembot G, Mélard A, et al. Intensive five-drug antiretroviral therapy regimen versus standard triple-drug therapy during primary HIV-1 infection (OPTIPRIM-ANRS 147): a randomised, open-label, phase 3 trial. Lancet Infect Dis. 2015 Apr;15(4):387–396. Epub 2015 Feb 18.
  • Murakami T, Ablan S, Freed EO, et al. Regulation of human immunodeficiency virus type 1 Env-mediated membrane fusion by viral protease activity. J Virol. 2004 Jan;78(2):1026–1031.
  • Surdo M, Balestra E, Saccomandi P, et al. Inhibition of dual/mixed tropic HIV-1 isolates by CCR5-inhibitors in primary lymphocytes and macrophages. PLoS One. 2013 Jul 9;8(7):e68076. Print 2013.
  • Borrajo A, Ranazzi A, Pollicita M, et al. Different patterns of HIV-1 replication in MACROPHAGES is led by co-receptor usage. Medicina (Kaunas). 2019 Jun 21;55(6):pii: E297.
  • Adamson CS, Ablan SD, Boeras I, et al. In vitro resistance to the human immunodeficiency virus type 1 maturation inhibitor PA-457 (Bevirimat). J Virol. 2006 Nov;80(22):10957–10971. Epub 2006 Sep 6.
  • Zhou J, Yuan X, Dismuke D, et al. Small-molecule inhibition of human immunodeficiency virus type 1 replication by specific targeting of the final step of virion maturation. J Virol. 2004 Jan;78(2):922–929.
  • Freed EO. HIV-1 assembly, release and maturation. Nat Rev Microbiol. 2015 Aug;13(8):484–496. Epub 2015 Jun 29. Review.
  • Lee SK, Potempa M, Swanstrom R. The choreography of HIV-1 proteolytic processing and virion assembly. J Biol Chem. 2012 Nov 30;287(49):40867–40874. Epub 2012 Oct 5. Review.
  • Urano E, Ablan SD, Mandt R, et al. Alkyl amine bevirimat derivatives are potent and broadly active HIV-1 maturation inhibitors. Antimicrob Agents Chemother. 2015 Oct 19;60(1):190–197. Print 2016 Jan.
  • Spearman P. HIV-1 gag as an antiviral target: development of assembly and maturation inhibitors. Curr Top Med Chem. 2016;16(10): 1154–1166. Review.
  • Sundquist WI, Kräusslich HG. HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med. 2012 Jul;2(7):a006924. DOI:. Review. Erratum in: Cold Spring Harb Perspect Med. 2012 Aug; 2 (8). doi: https://doi.org/10.1101/cshperspect.a015420.
  • Wyma DJ, Jiang J, Shi J, et al. Coupling of human immunodeficiency virus type 1 fusion to virion maturation: a novel role of the gp41 cytoplasmic tail. J Virol. 2004 Apr;78(7):3429–3435.
  • Checkley MA, Luttge BG, Soheilian F, et al. The capsid-spacer peptide 1 Gag processing intermediate is a dominant-negative inhibitor of HIV-1 maturation. Virology. 2010 Apr 25;400(1):137–144. Epub 2010 Feb 20.
  • Lee SK, Harris J, Swanstrom R. A strongly transdominant mutation in the human immunodeficiency virus type 1 gag gene defines an Achilles heel in the virus life cycle. J Virol. 2009 Sep;83(17):8536–8543.
  • Müller B, Anders M, Akiyama H, et al. HIV-1 Gag processing intermediates trans-dominantly interfere with HIV-1 infectivity. J Biol Chem. 2009 Oct 23;284(43):29692–29703. Epub 2009 Aug 7.
  • Wang D, Lu W, Li F. Pharmacological intervention of HIV-1 maturation. Acta Pharm Sin B. 2015 Nov 5;(6):493–499. Epub 2015 Jun 11. Review. Doi:https://doi.org/10.1016/j.apsb.2015.05.004
  • Li F, Zoumplis D, Matallana C, et al. Determinants of activity of the HIV-1 maturation inhibitor PA-457. Virology. 2006 Dec 5-20;356(1–2):217–224. Epub 2006 Aug 22.
  • Zhou J, Chen CH, Aiken C. Human immunodeficiency virus type 1 resistance to the small molecule maturation inhibitor 3-O-(3ʹ,3ʹ-dimethylsuccinyl)-betulinic acid is conferred by a variety of single amino acid substitutions at the CA-SP1 cleavage site in Gag. J Virol. 2006 Dec;80(24):12095–12101. Epub 2006 Oct 11.
  • Zhou J, Chen CH, Aiken C. The sequence of the CA-SP1 junction accounts for the differential sensitivity of HIV-1 and SIV to the small molecule maturation inhibitor 3-O-{3ʹ,3ʹ-dimethylsuccinyl}-betulinic acid. Retrovirology. 2004 Jun 29;1:15.
  • Zhou J, Huang L, Hachey DL, et al. Inhibition of HIV-1 maturation via drug association with the viral Gag protein in immature HIV-1 particles. J Biol Chem. 2005 Dec 23;280(51):42149–42155. Epub 2005 Oct 25.
  • Nowicka-Sans B, Protack T, Lin Z, et al. Identification and characterization of BMS-955176, a second-generation HIV-1 maturation inhibitor with improved potency, antiviral spectrum, and gag polymorphic coverage. Antimicrob Agents Chemother. 2016 Jun 20;60(7):3956–3969. Print 2016 Jul.
  • Regueiro-Ren A, Liu Z, Chen Y, et al. Discovery of BMS-955176, a second generation HIV-1 maturation inhibitor with broad spectrum antiviral activity. ACS Med Chem Lett. 2016 Apr 22;7(6):568–572. eCollection 2016 Jun 9.
  • Ray N, Li T, Lin Z, et al. The second-generation maturation inhibitor GSK3532795 maintains potent activity toward HIV protease inhibitor-resistant clinical isolates. J Acquir Immune Defic Syndr. 2017 May 1;75(1):52–60.
  • Sadowski I, Hashemi FB. Strategies to eradicate HIV from infected patients: elimination of latent provirus reservoirs. Cell Mol Life Sci. 2019 Sep;76(18):3583–3600. Epub 2019 May 25. Review.
  • Lusic M, Giacca M. Regulation of HIV-1 latency by chromatin structure and nuclear architecture. J Mol Biol. 2015 Feb 13;427(3):688–694. Epub 2014 Jul 27. Review.
  • Tamamis P, Floudas CA. Molecular recognition of CCR5 by an HIV-1 gp120 V3 loop. PLoS One. 2014 Apr 24;9(4):e95767. eCollection 2014.
  • Nowacek AS, Miller RL, McMillan J, et al. NanoART synthesis, characterization, uptake, release and toxicology for human monocyte-macrophage drug delivery. Nanomedicine (Lond). 2009 Dec;4(8):903–917.
  • Magnani M, Rossi L, Fraternale A, et al. Feline immunodeficiency virus infection of macrophages: in vitro and in vivo inhibition by dideoxycytidine-5ʹ-triphosphate-loaded erythrocytes. AIDS Res Hum Retroviruses. 1994 Sep;10(9):1179–1186.
  • Dou H, Grotepas CB, McMillan JM, et al. Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol. 2009 Jul 1;183(1):661–669. Epub 2009 Jun 17.
  • Martinez-Skinner AL, Veerubhotla RS, Liu H, et al. Functional proteome of macrophage carried nanoformulated antiretroviral therapy demonstrates enhanced particle carrying capacity. J Proteome Res. 2013 May 3;12(5):2282–2294.
  • Aouadi M, Tesz GJ, Nicoloro SM, et al. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature. 2009 Apr 30;458(7242):1180–1184.
  • Castellano P, Prevedel L, Eugenin EA. HIV-infected macrophages and microglia that survive acute infection become viral reservoirs by a mechanism involving Bim. Sci Rep. 2017 Oct 9;7(1):12866.
  • Castellano P, Prevedel L, Valdebenito S, et al. HIV infection and latency induce a unique metabolic signature in human macrophages. Sci Rep. 2019 Mar 8;9(1):3941.
  • Ganor Y, Real F, Sennepin A, et al. HIV-1 reservoirs in urethral macrophages of patients under suppressive antiretroviral therapy. Nat Microbiol. 2019 4;Apr(4):633–644.