3,564
Views
31
CrossRef citations to date
0
Altmetric
Research Paper

Putative determinants of virulence in Melissococcus plutonius, the bacterial agent causing European foulbrood in honey bees

ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 554-567 | Received 25 Jan 2018, Accepted 30 Apr 2020, Published online: 26 May 2020

  • Klein A-M, Vaissiere BE, Cane JH, et al. Importance of pollinators in changing landscapes for world crops. Proc Roy Soc Lond B Biol Sci. 2007;274(1608):303–313.
  • Ellis JD, Evans JD, Pettis J. Colony losses, managed colony population decline, and colony collapse disorder in the United States. J Apicult Res. 2010;49(1):134–136.
  • Neumann P, Carreck NL. Honey bee colony losses. J Apicult Res. 2010;49(1):1–6.
  • Potts SG, Biesmeijer JC, Kremen C, et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol. 2010;25(6):345–353.
  • Gray A, Brodschneider R, Adjlane N, et al. Loss rates of honey bee colonies during winter 2017/18 in 36 countries participating in the COLOSS survey, including effects of forage sources. J Apicult Res. 2019;58(4):479–485.
  • Moritz RFA, De Miranda J, Fries I, et al. Research strategies to improve honeybee health in Europe. Apidologie. 2010;41:227–242.
  • Evans JD, Schwarz RS. Bees brought to their knees: microbes affecting honey bee health. Trends Microbiol. 2011;19(12):614–620.
  • Smith KM, Loh EH, Rostal MK, et al. Pathogens, pests, and economics: drivers of honey bee colony declines and losses. EcoHealth. 2013;10(4):434–445.
  • Genersch E. Honey bee pathology: current threats to honey bees and beekeeping. Appl Microbiol Biotechnol. 2010;87(1):87–97.
  • Morimoto T, Kojima Y, Yoshiyama M, et al. Molecular detection of protozoan parasites infecting Apis mellifera colonies in Japan. Env Microbiol Rep. 2013;5(1):74–77.
  • Higes M, Martín‐Hernández R, Botías C, et al. How natural infection by Nosema ceranae causes honeybee colony collapse. Environ Microbiol. 2008;10(10):2659–2669.
  • Dietemann V, Pflugfelder J, Anderson D, et al. Varroa destructor: research avenues towards sustainable control. J Apicult Res. 2012;51(1):125–132.
  • Wilkins S, Brown MA, Cuthbertson AG. The incidence of honey bee pests and diseases in England and Wales. Pest Manag Sci. 2007;63(11):1062–1068.
  • Roetschi A, Berthoud H, Kuhn R, et al. Infection rate based on quantitative real-time PCR of Melissococcus plutonius, the causal agent of European foulbrood, in honeybee colonies before and after apiary sanitation. Apidologie. 2008;39(3):362–371.
  • Ellis JD, Munn PA. The worldwide health status of honey bees. Bee World. 2005;86(4):88–101.
  • Dahle B, Sorum H, Weidman E. European foulbrood in Norway: how to deal with a major outbreak after 30 years absence. COLOSS workshop: the future of brood disease research - guidelines, methods and development. Denmark.: Copenhagen; 2011.
  • Von Büren RS, Oehen B, Kuhn NJ, et al. High-resolution maps of Swiss apiaries and their applicability to study spatial distribution of bacterial honey bee brood diseases. PeerJ. 2019;7:e6393.
  • Dahle B, Wilkins S, Charrière J-D. European foulbrood (EFB) and American foulbrood (AFB) - distribution, status and control and management strategies throughout Europe. Murcia, Spain: EURBEE; 2014.
  • Hendrikx P, Saussac M, Meziani F, et al. Résabeilles: résultats de deux campagnes de surveillance programmée de la mortalité des abeilles en France [Résabeilles: results of two monitoring campaigns on the mortality of bees in France]. Bull Epid Santé Anim Alim. 2015;70:19–23.
  • Erban T, Ledvinka O, Kamler M, et al. Bacterial community associated with worker honeybees (Apis mellifera) affected by European foulbrood. PeerJ. 2017;5:e3816.
  • Grangier V, Belloy L, Charrière J-D, et al. Real-time PCR as a decision aid in the control of European foulbrood. J Apicult Res. 2015;54:366–372.
  • White G. The cause of European foulbrood. US Department of Agriculture Bureau of Entomology; 1912. circular no. 157.
  • Forsgren E. European foulbrood in honey bees. J Invertebr Pathol. 2010;103:S5–S9.
  • Bailey L. Melissococcus pluton, the cause of European foulbrood of honey bees (Apis spp.). J Appl Microbiol. 1983;55:65–69.
  • Bailey L, Ball BV. Honey bee pathology. London: Academic Press; 1991.
  • Miyagi T, Peng CYS, Chuang RY, et al. Verification of oxytetracycline-resistant American foulbrood pathogen Paenibacillus larvae in the United States. J Invertebr Pathol. 2000;75(1):95–96.
  • Waite R, Jackson S, Thompson H. Preliminary investigations into possible resistance to oxytetracycline in Melissococcus plutonius, a pathogen of honeybee larvae. Lett Appl Microbiol. 2003;36(1):20–24.
  • World Organisation for Animal Health (OIE). World animal health information database (WAHIS Interface) – version 1. [accessed date 2017 Dec 09; based on data for 2015]. https://www.oie.int/wahis_2/public/wahid.php/Wahidhome/Home.
  • Vale PF, McNally L, Doeschl-Wilson A, et al. Beyond killing: can we find new ways to manage infection? Evol Med Public Health. 2016;2016(1):148–157.
  • Abadi ATB, Kusters JG. Management of Helicobacter pylori infections. BMC Gastroenterol. 2016;16(1):94.
  • Bailey L, Gibbs AJ. Cultural characters of Streptococcus pluton and its differentiation from associated enterococci. Microbiology. 1962;28:385–391.
  • Djordjevic SP, Smith LA, Forbes WA, et al. Geographically diverse Australian isolates of Melissococcus pluton exhibit minimal genotypic diversity by restriction endonuclease analysis. FEMS Microbiol Lett. 1999;173(2):311–318.
  • Okumura K, Arai R, Okura M, et al. Complete genome sequence of Melissococcus plutonius ATCC 35311. J Bacteriol. 2011;193(15):4029–4030. .
  • Arai R, Tominaga K, Wu M, et al. Diversity of Melissococcus plutonius from honeybee larvae in Japan and experimental reproduction of European foulbrood with cultured atypical isolates. PLoS One. 2012;7(3):e33708. .
  • Okumura K, Arai R, Okura M, et al. Complete genome sequence of Melissococcus plutonius DAT561, a strain that shows an unusual growth profile and is representative of an endemic cluster in Japan. J Bacteriol. 2012;194(11):3014. .
  • Haynes E, Helgason T, Young JPW, et al. A typing scheme for the honeybee pathogen Melissococcus plutonius allows detection of disease transmission events and a study of the distribution of variants. Environ Microbiol Rep. 2013;5(4):525–529.
  • Budge GE, Shirley MDF, Jones B, et al. Molecular epidemiology and population structure of the honey bee brood pathogen Melissococcus plutonius. Isme J. 2014;8(8):1588–1597.
  • Takamatsu D, Morinishi K, Arai R, et al. Typing of Melissococcus plutonius isolated from European and Japanese honeybees suggests spread of sequence types across borders and between different Apis species. Vet Microbiol. 2014;171(1–2):221–226.
  • Djukic M, Erler S, Leimbach A, et al. Comparative genomics and description of putative virulence factors of Melissococcus plutonius, the causative agent of European foulbrood disease in honey bees. Genes (Basel). 2018;9(8):419.
  • Okumura K, Takamatsu D, Okura M. Complete genome sequence of Melissococcus plutonius DAT561, a strain that shows an unusual growth profile, obtained by PacBio sequencing. Genome Announc. 2018;6(23):e00431–18.
  • Nakamura K, Yamazaki Y, Shiraishi A, et al. Virulence differences among Melissococcus plutonius strains with different genetic backgrounds in Apis mellifera larvae under an improved experimental condition. Sci Rep. 2016;6(1).
  • Lewkowski O, Erler S. Virulence of Melissococcus plutonius and secondary invaders associated with European foulbrood disease of the honey bee. MicrobiologyOpen. 2018;8:e00649.
  • Blaser MJ, Cohn DL. Opportunistic infections in patients with AIDS: clues to the epidemiology of AIDS and the relative virulence of pathogens. Rev Infect Dis. 1986;8(1):21–30.
  • Erler S, Lewkowski O, Poehlein A, et al. The curious case of Achromobacter eurydice, a Gram-variable pleomorphic bacterium associated with European foulbrood disease in honeybees. Microb Ecol. 2018;75(1):1–6.
  • Bailey L. European foul brood: a disease of the larval honeybee (Apis mellifera L.) caused by a combination of Streptococcus pluton (Bacillus pluton white) and bacterium eurydice white. Nature. 1957;180(4596):1214–1215.
  • McKee BA, Goodman RD, Hornitzky MA. The transmission of European foulbrood (Melissococcus plutonius) to artificially reared honey bee larvae (Apis mellifera). J Apicult Res. 2004;43(3):93–100.
  • Giersch T, Barchia I, Hornitzky M. Can fatty acids and oxytetracycline protect artificially raised larvae from developing European foulbrood? Apidologie. 2010;41(2):151–159.
  • North RJ, Izzo AA. Mycobacterial virulence. Virulent strains of Mycobacteria tuberculosis have faster in vivo doubling times and are better equipped to resist growth-inhibiting functions of macrophages in the presence and absence of specific immunity. J Exp Med. 1993;177(6):1723–1733.
  • Zhang M, Gong J, Lin Y, et al. Growth of virulent and avirulent Mycobacterium tuberculosis strains in human macrophages. Infect Immun. 1998;66(2):794–799.
  • Finlay BB, Falkow S. Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev. 1997;61(2):136–169.
  • Wu H-J, Wang AH, Jennings MP. Discovery of virulence factors of pathogenic bacteria. Curr Opin Chem Biol. 2008;12(1):93–101.
  • Antúnez K, Anido M, Arredondo D, et al. Paenibacillus larvae enolase as a virulence factor in honeybee larvae infection. Vet Microbiol. 2011;147(1–2):83–89.
  • Fünfhaus A, Poppinga L, Genersch E. Identification and characterization of two novel toxins expressed by the lethal honey bee pathogen Paenibacillus larvae, the causative agent of American foulbrood. Environ Microbiol. 2013;15(11):2951–2965.
  • Garcia-Gonzalez E, Poppinga L, Fünfhaus A, et al. Paenibacillus larvae chitin-degrading protein PlCBP49 is a key virulence factor in American Foulbrood of honey bees. PLoS Pathog. 2014;10(7):e1004284.
  • Krska D, Ravulapalli R, Fieldhouse RJ, et al. C3larvin toxin, an ADP-ribosyltransferase from Paenibacillus larvae. J Biol Chem. 2015;290(3):1639–1653.
  • Bailey L. The pathogenicity for honey-bee larvae of microorganisms associated with European foulbrood. J Invertebr Pathol. 1963;5:198–205.
  • Evans JD, Spivak M. Socialized medicine: individual and communal disease barriers in honey bees. J Invertebr Pathol. 2010;103:S62–S72.
  • Bailey L. The isolation and cultural characteristics of Streptococcus pluton and further observations on Bacterium eurydice. Microbiology. 1957;17:39–48.
  • Aupinel P, Fortini D, Dufour H, et al. Improvement of artificial feeding in a standard in vitro method for rearing Apis mellifera larvae. Bull Insect. 2005;58:107.
  • Vasquez A, Forsgren E, Fries I, et al. Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS One. 2012;7(3):e33188.
  • Wu M, Sugimura Y, Iwata K, et al. Inhibitory effect of gut bacteria from the Japanese honey bee, Apis cerana japonica, against Melissococcus plutonius, the causal agent of European foulbrood disease. J Insect Sci. 2014;14.
  • Nakamura K, Okumura K, Harada M, et al. Different impacts of pMP19 on the virulence of Melissococcus plutonius strains with different genetic backgrounds. Env Microbiol. 2020.
  • Genersch E, Ashiralieva A, Fries I. Strain-and genotype-specific differences in virulence of Paenibacillus larvae subsp. larvae, a bacterial pathogen causing American foulbrood disease in honeybees. Appl Environ Microbiol. 2005;71:7551–7555.
  • Cremer S, Pull CD, Fürst MA. Social immunity: emergence and evolution of colony-level disease protection. Annu Rev Entomol. 2018;63(1):105–123.
  • Spivak M, Reuter GS. Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie. 2001;32:555–565.
  • Casadevall A, Pirofski L-A, Fischetti VA. Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect Immun. 1999;67(8):3703–3713.
  • Petit L, Maier E, Gibert M, et al. Clostridium perfringens Epsilon toxin induces a rapid change of cell membrane permeability to ions and forms channels in artificial lipid bilayers. J Biol Chem. 2001;276(19):15736–15740.
  • Erban T, Zitek J, Bodrinova M, et al. Comprehensive proteomic analysis of exoproteins expressed by ERIC I, II, III and IV Paenibacillus larvae genotypes reveals a wide range of virulence factors. Virulence. 2019;10(1):363–375.
  • Frost LS, Leplae RSummers AO, et al. Mobile genetic 975elements: the agents of open source evolution. Nat RevMicrobiol. 2005;3(9):722–732.
  • Anderson RM, May RM. Coevolution of hosts and parasites. Parasitology. 1982;85(2):411–426.
  • Ewald PW. Host-parasite relations, vectors, and the evolution of disease severity. Annu Rev Ecol Systemat. 1983;14(1):465–485.
  • Ebert D, Bull JJ. Evolution in health and disease. In: Stearns SC, Koella JC, eds. Evolution in health and disease: Oxford University Press; 2008. p. 153–167.
  • Alizon S, Hurford A, Mideo N, et al. Virulence evolution and the trade‐off hypothesis: history, current state of affairs and the future. J Evol Biol. 2009;22(2):245–259.
  • Govan V, Brözel V, Allsopp M, et al. A PCR detection method for rapid identification of Melissococcus pluton in honeybee larvae. Appl Environ Microbiol. 1998;64(5):1983–1985.
  • Fries I, Camazine S. Implications of horizontal and vertical pathogen transmission for honey bee epidemiology. Apidologie. 2001;32(3):199–214.
  • Forsgren E, Budge GE, Charrière J-D, et al. Standard methods for European foulbrood research. J Apicult Res. 2013;52(1):1–14.
  • Arai R, Miyoshi-Akiyama T, Okumura K, et al. Development of duplex PCR assay for detection and differentiation of typical and atypical Melissococcus plutonius strains. J Vet Med Sci. 2014;76(4):491–498.
  • Crailsheim K, Brodschneider R, Aupinel P, et al. Standard methods for artificial rearing of Apis mellifera larvae. J Apicult Res. 2013;52(1):1–16.
  • Human H, Brodschneider R, Dietemann V, et al. Miscellaneous standard methods for Apis mellifera research. J Apicult Res. 2013;52(4):1–53.
  • López JH, Schuehly W, Crailsheim K, et al. Trans-generational immune priming in honeybees. Proc Roy Soc Lond B Biol Sci. 2014;281(1785):20140454.
  • Hall BG, Acar H, Nandipati A, et al. Growth rates made easy. Mol Biol Evol. 2013;31(1):232–238.
  • Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53(282):457–481.
  • Therneau T. A package for survival analysis in S. R Package Version. 2015;2.37-7:2014.
  • Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6(2):65–70.
  • Medrzycki P, Giffard H, Aupinel P, et al. Standard methods for toxicology research in Apis mellifera. J Apicult Res. 2013;52(4):1–60.
  • Petzoldt T. Growthrates: estimate growth rates from experimental data. R Package. 2016.
  • Madigan MT, Martinko JM, Parker J. Brock biology of microorganisms. Upper Saddle River, NJ: Prentice hall; 1997.
  • Elso CM, Roberts LJ, Smyth GK, et al. Leishmaniasis host response loci (lmr1–3) modify disease severity through a Th1/Th2-independent pathway. Gene Immun. 2004;5(2):93–100.
  • Baldwin T, Sakthianandeswaren A, Curtis JM, et al. Wound healing response is a major contributor to the severity of cutaneous leishmaniasis in the ear model of infection. Parasite Immunol. 2007;29(10):501–513.
  • Smyth G, Hu Y, Dunn P, et al. Statmod: statistical Modeling. R package version 1.4. 21. Available from: http://cran/.r-project.org/package=statmod, 2015.
  • McClelland EE, Bernhardt P, Casadevall A. Estimating the relative contributions of virulence factors for pathogenic microbes. Infect Immun. 2006;74(3):1500–1504.