3,938
Views
26
CrossRef citations to date
0
Altmetric
Review article

PE_PGRS proteins of Mycobacterium tuberculosis: A specialized molecular task force at the forefront of host–pathogen interaction

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 898-915 | Received 18 Jan 2020, Accepted 17 Jun 2020, Published online: 25 Jul 2020

References

  • World Health Organization (2019) WHO consolidated guidelines on drug-resistant tuberculosis.
  • Barry CE III, Boshoff HI, Dartois V, et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol. 2009;7(12):845–855.
  • Delogu G, Sali M, Fadda G. The biology of M. tuberculosis infection. Mediterr J Hematol Infect Dis. 2013;5(1):e2013070.
  • Cadena AM, Fortune SM, Flynn JL. Heterogeneity in tuberculosis. Nat Rev Immunol. 2017;17(11):691–702.
  • Delogu G, Provvedi R, Sali M, et al. Mycobacterium tuberculosis virulence: insights and impact on vaccine development. Future Microbiol. 2015;10(7):1177–1194.
  • Gengenbacher M, Kaufmann SHE. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev. 2012;36(3):514–532.
  • Malone KM, Gordon SV. Mycobacterium tuberculosis complex members adapted to wild and domestic animals. Adv Exp Med Biol. 2017;1019:135–154.
  • Gutierrez MC, Brisse S, Brosch R, et al. Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog. 2005;1(1):e5.
  • Brosch R, Gordon SV, Marmiesse M, et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A. 2002;99(6):3684–3689.
  • Supply P, Marceau M, Mangenot S, et al. Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nat Genet. 2013;45(2):172–179.
  • Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence [see comments] [published erratum appears in Nature 1998 Nov 12;396(6707):190]. Nature. 1998;393(6685):537–544.
  • Brennan MJ, Delogu G. The PE multigene family: a ‘molecular mantra’ for mycobacteria. Trends Microbiol. 2002;10(5):246–249.
  • Fishbein S, van WN, Warren RM, et al. Phylogeny to function: PE/PPE protein evolution and impact on Mycobacterium tuberculosis pathogenicity. Mol Microbiol. 2015;96(5):901–916.
  • Gey van Pittius NC, Sampson SL, Lee H, et al. Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol Biol. 2006;6(1):95.
  • Poulet S, Cole ST. Characterization of the highly abundant polymorphic GC-rich-repetitive sequence (PGRS) present in Mycobacterium tuberculosis. Arch Microbiol. 1995;163(2):87–95.
  • Delogu G, Cole ST, Brosch R. The PE and PPE protein families of Mycobacterium tuberculosis. In: Kaufmann SH, Rubin E, editors. Handbook of Tuberculosis. Weinheim: Wiley-VCH Verlag GmbH%Co. KGaA; 2008. p. 131–150.
  • Stinear TP, Seemann T, Harrison PF, et al. Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res. 2008;18(5):729–741.
  • Brennan MJ, Maurelli AT. The Enigmatic PE/PPE multigene family of mycobacteria and tuberculosis vaccination. Infect Immun. 2017;85(6):IAI.00969–16.
  • Ates LS. New insights into the mycobacterial PE and PPE proteins provide a framework for future research. Mol Microbiol. 2019. DOI:https://doi.org/10.1111/mmi.14409
  • Groschel MI, Sayes F, Simeone R, et al. ESX secretion systems: mycobacterial evolution to counter host immunity. Nat Rev Microbiol. 2016;14(11):677–691. nrmicro.2016.131;.
  • Abdallah AM, Verboom T, Weerdenburg EM, et al. PPE and PE_PGRS proteins of Mycobacterium marinum are transported via the type VII secretion system ESX-5. Mol Microbiol. 2009;73(3):329–340. MMI6783;.
  • Ates LS, Houben EN, Bitter W. Type VII secretion: a highly versatile secretion system. Microbiol Spectr. 2016;4(1). DOI:https://doi.org/10.1128/microbiolspec.VMBF-0011-2015
  • Karboul A, Gey van Pittius NC, Namouchi A, et al. Insights into the evolutionary history of tubercle bacilli as disclosed by genetic rearrangements within a PE_PGRS duplicated gene pair. BMC Evol Biol. 2006;6(1):107.
  • Sapriel G, Brosch R, Bapteste E. Shared pathogenomic patterns characterize a new phylotype, revealing transition toward host-adaptation long before speciation of mycobacterium tuberculosis. Genome Biol Evol. 2019;11(8):2420–2438. 5542391;.
  • Fedrizzi T, Meehan CJ, Grottola A, et al. Genomic characterization of nontuberculous mycobacteria. Sci Rep. 2017;7(1). 45258. srep45258; DOI:https://doi.org/10.1038/srep45258.
  • McEvoy CR, van Helden PD, Warren RM, et al. Evidence for a rapid rate of molecular evolution at the hypervariable and immunogenic Mycobacterium tuberculosis PPE38 gene region. BMC Evol Biol. 2009;9(1):237.
  • Namouchi A, Karboul A, Fabre M, et al. Evolution of smooth tubercle Bacilli PE and PE_PGRS genes: evidence for a prominent role of recombination and imprint of positive selection. PLoS ONE. 2013;8(5):e64718.
  • Karboul A, Mazza A, Gey van Pittius NC, et al. Frequent homologous recombination events in Mycobacterium tuberculosis PE/PPE multigene families: potential role in antigenic variability. J Bacteriol. 2008;190(23):7838–7846.
  • Delogu G, Brennan MJ, Manganelli R. PE and PPE genes: a tale of conservation and diversity. Adv Exp Med Biol. 2017;1019:191–207.
  • Copin R, Coscolla M, Seiffert SN, et al. Sequence diversity in the pe_pgrs genes of Mycobacterium tuberculosis is independent of human T cell recognition. MBio. 2014;5(1):e00960–13.
  • Camassa S, Palucci I, Iantomasi R, et al. Impact of pe_pgrs33 gene polymorphisms on Mycobacterium tuberculosis Infection and Pathogenesis. Front Cell Infect Microbiol. 2017;7:137.
  • Strong M, Sawaya MR, Wang S, et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2006;103(21):8060–8065.
  • Tundup S, Akhter Y, Thiagarajan D, et al. Clusters of PE and PPE genes of Mycobacterium tuberculosis are organized in operons: evidence that PE Rv2431c is co-transcribed with PPE Rv2430c and their gene products interact with each other. FEBS Lett. 2006;580(5):1285–1293.
  • Daleke MH, Cascioferro A, de PK, et al. Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY Lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway. J Biol Chem. 2011;286(21):19024–19034.
  • Tundup S, Mohareer K, Hasnain SE. Mycobacterium tuberculosis PE25/PPE41 protein complex induces necrosis in macrophages: role in virulence and disease reactivation? FEBS Open Bio. 2014;4(1):822–828.
  • Ekiert DC, Cox JS. Structure of a PE-PPE-EspG complex from Mycobacterium tuberculosis reveals molecular specificity of ESX protein secretion. Proc Natl Acad Sci U S A. 2014;111(41):14758–14763. 1409345111;.
  • Chen X, Cheng H-F, Zhou J, et al. Structural basis of the PE–PPE protein interaction in Mycobacterium tuberculosis. J Biol Chem. 2017;292(41):16880–16890.
  • Webb B, Sali A. Comparative Protein Structure Modeling Using MODELLER. Curr Protoc Protein Sci. 2016;86(1):2.
  • Korotkova N, Freire D, Phan TH, et al. Structure of the Mycobacterium tuberculosis type VII secretion system chaperone EspG5 in complex with PE25-PPE41 dimer. Mol Microbiol. 2014;94(2):367–382.
  • Burggraaf MJ, Speer A, Meijers AS, et al. Type vii secretion substrates of pathogenic mycobacteria are processed by a surface protease. MBio. 2019;10(5). mBio.01951-19; DOI:https://doi.org/10.1128/mBio.01951-19.
  • Delogu G, Pusceddu C, Bua A, et al. Rv1818c-encoded PE_PGRS protein of Mycobacterium tuberculosis is surface exposed and influences bacterial cell structure. Mol Microbiol. 2004;52(3):725–733.
  • Basu S, Pathak SK, Banerjee A, et al. Execution of macrophage apoptosis by PE_PGRS33 of Mycobacterium tuberculosis is mediated by Toll-like receptor 2-dependent release of tumor necrosis Factor-α. J Biol Chem. 2007;282(2):1039–1050.
  • Cascioferro A, Daleke MH, Ventura M, et al. Functional dissection of the PE domain responsible for translocation of PE_PGRS33 across the mycobacterial cell wall. PLoS ONE. 2011;6(11):e27713.
  • Palucci I, Camassa S, Cascioferro A, et al. PE_PGRS33 contributes to Mycobacterium tuberculosis entry in macrophages through interaction with TLR2. PLoS ONE. 2016;11(3):e0150800. PONE-D-15-32359;.
  • Cohen I, Parada C, Acosta-Gio E, et al. The PGRS domain from PE_PGRS33 of Mycobacterium tuberculosis is target of humoral immune response in mice and humans. Front Immunol. 2014;5:236.
  • Shi Z, Chen K, Liu Z, et al. Polyproline II propensities from GGXGG peptides reveal an anticorrelation with beta-sheet scales. Proc Natl Acad Sci U S A. 2005;102(50):17964–17968. 0507124102;.
  • Warkentin E, Weidenweber S, Schuhle K, et al. A rare polyglycine type II-like helix motif in naturally occurring proteins. Proteins. 2017;85(11):2017–2023.
  • Dunne M, Denyes JM, Arndt H, et al. Salmonella phage S16 tail fiber adhesin features a rare polyglycine rich domain for host recognition. Structure. 2018;26(12):1573–1582. S0969-2126(18)30263-6;.
  • Berisio R, Vitagliano L. Polyproline and triple helix motifs in host-pathogen recognition. Curr Protein Pept Sci. 2012;13(8):855–865. CPPS-EPUB-20121210-12..
  • Iantomasi R, Sali M, Cascioferro A, et al. PE_PGRS30 is required for the full virulence of Mycobacterium tuberculosis. Cell. 2012;14(3):356–367.
  • De Maio F, Maulucci G, Minerva M, et al. Impact of protein domains on PE_PGRS30 polar localization in Mycobacteria. PLoS ONE. 2014;9(11):e112482.
  • Thi EP, Hong CJH, Sanghera G, et al. Identification of the Mycobacterium tuberculosis protein PE-PGRS62 as a novel effector that functions to block phagosome maturation and inhibit iNOS expression. Cell Microbiol. 2013;15(5):795–808.
  • Cascioferro A, Delogu G, Colone M, et al. PE is a functional domain responsible for protein translocation and localization on mycobacterial cell wall. Mol Microbiol. 2007;66(6):1536–1547.
  • Sali M, Di SG, Cascioferro A, et al. Surface expression of MPT64 as a fusion with the PE domain of PE_PGRS33 enhances Mycobacterium bovis BCG protective activity against Mycobacterium tuberculosis in mice. Infect Immun. 2010;78(12):5202–5213.
  • Zumbo A, Palucci I, Cascioferro A, et al. Functional dissection of protein domains involved in the immunomodulatory properties of PE_PGRS33 of Mycobacterium tuberculosis. Pathog Dis. 2013;69(3):232–239.
  • Ates LS, Dippenaar A, Ummels R, et al. Mutations in ppe38 block PE_PGRS secretion and increase virulence of Mycobacterium tuberculosis. Nat Microbiol. 2018;3(2):181–188.
  • Ates LS, Sayes F, Frigui W, et al. RD5-mediated lack of PE_PGRS and PPE-MPTR export in BCG vaccine strains results in strong reduction of antigenic repertoire but little impact on protection. PLoS Pathog. 2018;14(6):e1007139.
  • Ates LS, Dippenaar A, Sayes F, et al. Unexpected genomic and phenotypic diversity of Mycobacterium africanum Lineage 5 affects drug resistance, protein secretion, and immunogenicity. Genome Biol Evol. 2018;10(8):1858–1874.
  • Chatrath S, Gupta VK, Garg LC. The PGRS domain is responsible for translocation of PE_PGRS30 to cell poles while the PE and the C-terminal domains localize it to the cell wall. FEBS Lett. 2014;588(6):990–994.
  • Phelan JE, Coll F, Bergval I, et al. Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages. BMC Genomics. 2016;17(1):151.
  • De Maio F, Battah B, Palmieri V, et al. PE_PGRS3 of Mycobacterium tuberculosis is specifically expressed at low phosphate concentration, and its arginine-rich C-terminal domain mediates adhesion and persistence in host tissues when expressed in Mycobacterium smegmatis. Cell Microbiol. 2018;20(12):e12952.
  • Grover S, Sharma T, Singh Y, et al. The PGRS domain of Mycobacterium tuberculosis PE_PGRS protein Rv0297 Is Involved in endoplasmic reticulum stress-mediated apoptosis through toll-like receptor 4. MBio. 2018;9(3).
  • Chaturvedi R, Bansal K, Narayana Y, et al. The multifunctional PE_PGRS11 protein from Mycobacterium tuberculosis plays a role in regulating resistance to oxidative stress. J Biol Chem. 2010;285(40):30389–30403.
  • Wayne LG, Sohaskey CD. Nonreplicating persistence of Mycobacterium tuberculosis. Annu Rev Microbiol. 2001;55(1):139–163.
  • Bansal K, Elluru SR, Narayana Y, et al. PE_PGRS antigens of Mycobacterium tuberculosis induce maturation and activation of human dendritic cells. J Immunol. 2010;184(7):3495–3504.
  • Barathy DV, Suguna K. Crystal structure of a putative aspartic proteinase domain of the Mycobacterium tuberculosis cell surface antigen PE_PGRS16. FEBS Open Bio. 2013;3(1):256–262.
  • Dheenadhayalan V, Delogu G, Sanguinetti M, et al. Variable expression patterns of Mycobacterium tuberculosis PE_PGRS genes: evidence that PE_PGRS16 and PE_PGRS26 are inversely regulated in vivo. J Bacteriol. 2006;188(10):3721–3725.
  • Charles RC, Sultana T, Alam MM, et al. Identification of immunogenic Salmonella enterica serotype Typhi antigens expressed in chronic biliary carriers of S. Typhi in Kathmandu, Nepal. PLoS Negl Trop Dis. 2013;7(8):e2335.
  • Chen T, Zhao Q, Li W, et al. Mycobacterium tuberculosis PE_PGRS17 promotes the death of host cell and cytokines secretion via Erk kinase accompanying with enhanced survival of recombinant Mycobacterium smegmatis. J Interferon Cytokine Res. 2013;33(8):452–458.
  • Yang W, Deng W, Zeng J, et al. Mycobacterium tuberculosis PE_PGRS18 enhances the intracellular survival of M. smegmatis via altering host macrophage cytokine profiling and attenuating the cell apoptosis. Apoptosis. 2017;22(4):502–509.
  • Chai Q, Wang X, Qiang L, et al. A Mycobacterium tuberculosis surface protein recruits ubiquitin to trigger host xenophagy. Nat Commun. 2019;10(1):1973. https://doi.org/10.1038/s41467-019-09955-8;.
  • Ramakrishnan L. Granuloma-specific expression of mycobacterium virulence proteins from the Glycine-rich PE-PGRS family. Science. 2000;288(5470):1436–1439.
  • Delogu G, Sanguinetti M, Pusceddu C, et al. PE_PGRS proteins are differentially expressed by Mycobacterium tuberculosis in host tissues. Microbes Infect. 2006;8(8):2061–2067.
  • Banu S, Honore N, Saint-Joanis B, et al. Are the PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens? Mol Microbiol. 2002;44(1):9–19.
  • Vallecillo AJ, Espitia C. Expression of Mycobacterium tuberculosis pe_pgrs33 is repressed during stationary phase and stress conditions, and its transcription is mediated by sigma factor A. Microb Pathog. 2009;46(3):119–127. S0882-4010(08)00151-4;.
  • Brennan MJ, Delogu G, Chen Y, et al. Evidence that mycobacterial PE_PGRS proteins are cell surface constituents that influence interactions with other cells. Infect Immun. 2001;69(12):7326–7333.
  • Narayana Y, Joshi B, Katoch VM, et al. Differential B-cell responses are induced by Mycobacterium tuberculosis PE antigens Rv1169c, Rv0978c, and Rv1818c. Clin Vaccine Immunol. 2007;14(10):1334–1341.
  • Dheenadhayalan V, Delogu G, Brennan MJ. Expression of the PE_PGRS 33 protein in Mycobacterium smegmatis triggers necrosis in macrophages and enhanced mycobacterial survival. Microbes Infect. 2006;8(1):262–272.
  • Balaji KN, Goyal G, Narayana Y, et al. Apoptosis triggered by Rv1818c, a PE family gene from Mycobacterium tuberculosis is regulated by mitochondrial intermediates in T cells. Microbes Infect. 2007;9(3):271–281.
  • Singh PP, Parra M, Cadieux N, et al. A comparative study of host response to three Mycobacterium tuberculosis PE_PGRS proteins. Microbiology. 2008;154(11):3469–3479.
  • Minerva M, De MF, Camassa S, et al. Evaluation of PE_PGRS33 as a potential surface target for humoral responses against Mycobacterium tuberculosis. Pathog Dis. 2017;75(8).
  • Talarico S, Zhang L, Marrs CF, et al. Mycobacterium tuberculosis PE_PGRS16 and PE_PGRS26 genetic polymorphism among clinical isolates. Tuberculosis (Edinb). 2008;88(4):283–294.
  • Wang J, Huang Y, Zhang A, et al. DNA polymorphism of Mycobacterium tuberculosis PE_PGRS33 gene among clinical isolates of pediatric TB patients and its associations with clinical presentation. Tuberculosis (Edinb). 2011;91(4):287–292.
  • Abramovitch RB, Rohde KH, Hsu FF, et al. aprABC: a Mycobacterium tuberculosis complex-specific locus that modulates pH-driven adaptation to the macrophage phagosome. Mol Microbiol. 2011;80(3):678–694.
  • Deng W, Long Q, Zeng J, et al. Mycobacterium tuberculosis PE_PGRS41 Enhances the Intracellular Survival of M. smegmatis within Macrophages Via blocking innate immunity and inhibition of host defense. Sci Rep. 2017;7(1):46716.
  • Saini NK, Baena A, Ng TW, et al. Suppression of autophagy and antigen presentation by Mycobacterium tuberculosis PE_PGRS47. Nat Microbiol. 2016;1(9):16133.
  • Soldini S, Palucci I, Zumbo A, et al. PPE_MPTR genes are differentially expressed by Mycobacterium tuberculosis in vivo. Tuberculosis (Edinb). 2011;91(6):563–568.
  • Strong M, Goulding CW. Structural proteomics and computational analysis of a deadly pathogen: combating Mycobacterium tuberculosis from multiple fronts. Methods Biochem Anal. 2006;49:245–269.
  • Hajishengallis G, Shakhatreh MA, Wang M, et al. Complement Receptor 3 blockade promotes IL-12-mediated clearance of porphyromonas gingivalis and negates its virulence in Vivo. J Immunol. 2007;179(4):2359–2367. 179/4/2359..
  • Russell DG. Mycobacterium tuberculosis and the intimate discourse of a chronic infection. Immunol Rev. 2011;240(1):252–268.
  • Bitter W, Houben EN, Bottai D, et al. Systematic genetic nomenclature for type VII secretion systems. PLoS Pathog. 2009;5(10):e1000507.
  • Pym AS, Brodin P, Majlessi L, et al. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med. 2003;9(5):533–539.
  • Simeone R, Bobard A, Lippmann J, et al. Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog. 2012;8(2):e1002507.
  • Stucki D, Brites D, Jeljeli L, et al. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet. 2016;48(12):1535–1543.
  • Chatrath S, Gupta VK, Dixit A, et al. The Rv1651c-encoded PE-PGRS30 protein expressed in Mycobacterium smegmatis exhibits polar localization and modulates its growth profile. FEMS Microbiol Lett. 2011;322(2):194–199.
  • Cadieux N, Parra M, Cohen H, et al. Induction of cell death after localization to the host cell mitochondria by the Mycobacterium tuberculosis PE_PGRS33 protein. Microbiology. 2011;157(3):793–804.
  • Kruh NA, Troudt J, Izzo A, et al. Portrait of a pathogen: the Mycobacterium tuberculosis proteome in vivo. PLoS ONE. 2010;5(11):e13938.
  • Talarico S, Cave MD, Foxman B, et al. Association of Mycobacterium tuberculosis PE PGRS33 polymorphism with clinical and epidemiological characteristics. Tuberculosis (Edinb). 2007;87(4):338–346.