1,254
Views
6
CrossRef citations to date
0
Altmetric
Research paper

Cu transporter protein CrpF protects against Cu-induced toxicity in Fusarium oxysporum

ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 1108-1121 | Received 07 Jan 2020, Accepted 08 Aug 2020, Published online: 30 Aug 2020

References

  • Gerwien F, Skrahina V, Kasper L, et al. Metals in fungal virulence. FEMS Microbiol Rev. 2018;42:1–21.
  • Nevitt T, Ohrvik H, Thiele DJ. Charting the travels of copper in eukaryotes from yeast to mammals. Biochim Biophys Acta. 2012;1823:1580–1593.
  • Tchounwou PB, Yedjou CG, Patlolla AK, et al. Heavy metal toxicity and the environment. Experientia supplementum (2012). 2012;101:133–164.
  • Jan AT, Azam M, Siddiqui K, et al. Heavy Metals and Human Health: mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int J Mol Sci. 2015;16:29592–29630.
  • Valasatava Y, Rosato A, Furnham N, et al. To what extent do structural changes in catalytic metal sites affect enzyme function? J Inorg Biochem. 2018;179:40–53.
  • Chandrangsu P, Rensing C, Helmann JD. Metal homeostasis and resistance in bacteria. Nat Rev. 2017;15:338–350.
  • Bashir K, Rasheed S, Kobayashi T, et al. Regulating Subcellular Metal Homeostasis: the Key to Crop Improvement. Front Plant Sci. 2016;7:1192.
  • Balamurugan K, Schaffner W. Copper homeostasis in eukaryotes: teetering on a tightrope. Biochim Biophys Acta. 2006;1763:737–746.
  • Li C, Li Y, Ding C. The role of copper homeostasis at the host-pathogen axis: from bacteria to fungi. Int J Mol Sci. 2018;20. DOI:https://doi.org/10.3390/ijms20010061
  • Smith AD, Logeman BL, Thiele DJ. Copper acquisition and utilization in fungi. Annu Rev Microbiol. 2017;71:597–623.
  • Zafar S, Aqil F, Ahmad I. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol. 2007;98:2557–2561.
  • Luna C, Marcos. K, Rodrigues Vieira K, et al. Copper-induced adaptation, oxidative stress and its tolerance in Aspergillus niger UCP1261. Electron J Biotechnol. 2015;18:418–427.
  • Besold AN, Culbertson EM, Culotta VC. The Yin and Yang of copper during infection. J Biol Inorg Chem. 2016;21:137–144.
  • Festa RA, Helsel ME, Franz KJ, et al. Exploiting innate immune cell activation of a copper-dependent antimicrobial agent during infection. Chem Biol. 2014;21:977–987.
  • Song J, Li R, Jiang J. Copper homeostasis in Aspergillus fumigatus: opportunities for therapeutic development. Front Microbiol. 2019;10:774.
  • Mackie J, Szabo EK, Urgast DS, et al. Host-imposed copper poisoning impacts fungal micronutrient acquisition during systemic Candida albicans Infections. PloS One. 2016;11:e0158683.
  • Wiemann P, Perevitsky A, Lim FY, et al. Aspergillus fumigatus copper export machinery and reactive oxygen intermediate defense counter host copper-mediated oxidative antimicrobial offense. Cell Rep. 2017;19:2174–2176.
  • Kuhlbrandt W. Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol. 2004;5:282–295.
  • Smith AT, Smith KP, Rosenzweig AC. Diversity of the metal-transporting P1B-type ATPases. J Biol Inorg Chem. 2014;19:947–960.
  • Antsotegi-Uskola M, Markina-Inarrairaegui A, Ugalde U. Copper resistance in Aspergillus nidulans relies on the PI-Type ATPase CrpA, regulated by the transcription factor AceA. Front Microbiol. 2017;8:912.
  • Scarborough GA. Structure and function of the P-type ATPases. Curr Opin Cell Biol. 1999;11:517–522.
  • Weissman Z, Berdicevsky I, Cavari BZ, et al. The high copper tolerance of Candida albicans is mediated by a P-type ATPase. Proc Natl Acad Sci U S A. 2000;97:3520–3525.
  • Yang K, Shadkchan Y, Tannous J, et al. Contribution of ATPase copper transporters in animal but not plant virulence of the crossover pathogen Aspergillus flavus. Virulence. 2018;9:1273–1286.
  • Ortoneda M, Guarro J, Madrid MP, et al. Fusarium oxysporum as a multihost model for the genetic dissection of fungal virulence in plants and mammals. Infect Immun. 2004;72:1760–1766.
  • Lorenzo-Gutierrez D, Gomez-Gil L, Guarro J, et al. Role of the Fusarium oxysporum metallothionein Mt1 in resistance to metal toxicity and virulence. Metallomics. 2019;11:1230–1240.
  • Di Pietro A, Roncero MI. Cloning, expression, and role in pathogenicity of pg1 encoding the major extracellular endopolygalacturonase of the vascular wilt pathogen Fusarium oxysporum. Mol Plant Microbe Interact. 1998;11:91–98.
  • Aljanabi SM, Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 1997;4692–4693. DOI:https://doi.org/10.1093/nar/25.22.4692
  • Chomczynski P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. BioTechniques. 1993;15:532–4, 6–7.
  • Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680.
  • Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–2729.
  • Catlett NL, Lee BN, Poder OC, et al. Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genet Biol. 2003;50:9–11.
  • Carroll AM, Sweigard JA, Valent B. Improved vectors for selecting resistance to hygromycin. Fungal Genet Newsl. 1993;41:22.
  • Hoff B, Kamerewerd J, Sigl C, et al. Homologous recombination in the antibiotic producer Penicillium chrysogenum: strain DeltaPcku70 shows up-regulation of genes from the HOG pathway. Appl Microbiol Biotechnol. 2010;85:1081–1094.
  • Lopez-Berges MS, Rispail N, Prados-Rosales RC, et al. A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB. Plant Cell. 2010;22:2459–2475.
  • Adamo GM, Brocca S, Passolunghi S, et al. Laboratory evolution of copper tolerant yeast strains. Microb Cell Fact. 2012;11:1.
  • Brenner AJ, Harris ED. A quantitative test for copper using bicinchoninic acid. Anal Biochem. 1995;226:80–84.
  • Lopez-Berges MS, Capilla J, Turra D, et al. HapX-mediated iron homeostasis is essential for rhizosphere competence and virulence of the soilborne pathogen Fusarium oxysporum. Plant Cell. 2012;24:3805–3822.
  • Ruiz-Cendoya M, Pastor FJ, Capilla J, et al. Treatment of murine Fusarium verticillioides infection with liposomal amphotericin B plus terbinafine. Int J Antimicrob Agents. 2011;37:58–61.
  • Schafer K, Bain JM, Di Pietro A, et al. Hyphal growth of phagocytosed Fusarium oxysporum causes cell lysis and death of murine macrophages. PloS One. 2014;9:e101999.
  • Arioz C, Li Y, Wittung-Stafshede P. The six metal binding domains in human copper transporter, ATP7B: molecular biophysics and disease-causing mutations. Biometals. 2017;30:823–840.
  • Inesi G, Pilankatta R, Tadini-Buoninsegni F. Biochemical characterization of P-type copper ATPases. Biochem J. 2014;463:167–176.
  • Riggle PJ, Kumamoto CA. Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. J Bacteriol. 2000;182:4899–4905.
  • Migocka M. Copper-transporting ATPases: the evolutionarily conserved machineries for balancing copper in living systems. IUBMB Life. 2015;67:737–745.
  • Palmgren MG, Nissen P. P-type ATPases. Annu Rev Biophys. 2011;40:243–266.
  • Rosenzweig AC, Arguello JM. Toward a molecular understanding of metal transport by P(1B)-type ATPases. Curr Top Membr. 2012;69:113–136.
  • Shiraishi E, Inouhe M, Joho M, et al. The cadmium-resistant gene, CAD2, which is a mutated putative copper-transporter gene (PCA1), controls the intracellular cadmium-level in the yeast S. cerevisiae. Curr Genet. 2000;37:79–86.
  • Huffman DL, O’Halloran TV. Energetics of copper trafficking between the Atx1 metallochaperone and the intracellular copper transporter, Ccc2. J Biol Chem. 2000;275:18611–18614.
  • Mohammadian Fazli M, Soleimani N, Mehrasbi M, et al. Highly cadmium tolerant fungi: their tolerance and removal potential. J Environ Health Sci Eng. 2015;13:19.
  • Jarosz-Wilkolazka A, Graz M, Braha B, et al. Species-specific Cd-stress response in the white rot basidiomycetes Abortiporus biennis and Cerrena unicolor. Biometals. 2006;19:39–49.
  • Ezzouhri L, Castro E, Moya M, et al. Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco. Afr J Microbiol Res. 2009;3:035–48.
  • Ferreira CR, Gahl WA. Disorders of metal metabolism. Trans Sci Rare Dis. 2017;2:101–139.
  • Suzuki M, Gitlin JD. Intracellular localization of the Menkes and Wilson’s disease proteins and their role in intracellular copper transport. Pediatr Int. 1999;41:436–442.
  • Lenartowicz M, Grzmil P, Shoukier M, et al. Mutation in the CPC motif-containing 6th transmembrane domain affects intracellular localization, trafficking and copper transport efficiency of ATP7A protein in mosaic mutant mice–an animal model of Menkes disease. Metallomics. 2012;4:197–204.
  • Cater MA, La Fontaine S, Mercer JF. Copper binding to the N-terminal metal-binding sites or the CPC motif is not essential for copper-induced trafficking of the human Wilson protein (ATP7B). Biochem J. 2007;401:143–153.
  • Ouziad F, Hildebrandt U, Schmelzer E, et al. Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol. 2005;162:634–649.
  • Cai Z, Du W, Zhang Z, et al. The Aspergillus fumigatus transcription factor AceA is involved not only in Cu but also in Zn detoxification through regulating transporters CrpA and ZrcA. Cell Microbiol. 2018;20:e12864.
  • Argüello JM. Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases. J Membr Biol. 2003;195:93–108.
  • Rad MR, Kirchrath L, Hollenberg CP. A putative P-type Cu2+-transporting ATPase gene on chromosome II of Saccharomyces cerevisiae. Yeast. 1994;10:1217–1225.
  • De Freitas JM, Kim JH, Poynton H, et al. Exploratory and confirmatory gene expression profiling of mac1Δ. J Biol Chem. 2004;279:4450–4458.
  • Cobbold C, Ponnambalam S, Francis MJ, et al. Novel membrane traffic steps regulate the exocytosis of the Menkes disease ATPase. Hum Mol Genet. 2002;11:2855–2866.
  • Bakti F, Sasse C, Heinekamp T, et al. Heavy metal-induced expression of PcaA provides cadmium tolerance to Aspergillus fumigatus and supports its virulence in the Galleria mellonella model. Front Microbiol. 2018;9:744.
  • Gallenito MJ, Irvine GW, Zhang L, et al. Coordination promiscuity guarantees metal substrate selection in transmembrane primary-active Zn2+ pumps. Chem Commun (Camb). 2019;55:10844–10847.
  • Garrido EO, Grant CM. Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides. Mol Microbiol. 2002;43:993–1003.
  • Trotter EW, Rand JD, Vickerstaff J, et al. The yeast Tsa1 peroxiredoxin is a ribosome-associated antioxidant. Biochem J. 2008;412:73–80.
  • Duan X, Kelsen SG, Merali S. Proteomic analysis of oxidative stress-responsive proteins in human pneumocytes: insight into the regulation of DJ-1 expression. J Proteome Res. 2008;7:4955–4961.
  • Contreras L, Moenne A, Gaillard F, et al. Proteomic analysis and identification of copper stress-regulated proteins in the marine alga Scytosiphon gracilis (Phaeophyceae). Aquat Toxicol. 2010;96:85–89.
  • Morigasaki S, Shimada K, Ikner A, et al. Glycolytic enzyme GAPDH promotes peroxide stress signaling through multistep phosphorelay to a MAPK cascade. Mol Cell. 2008;30:108–113.
  • Tarrant E, Riboldi GP, McIlvin MR, et al. Copper stress in Staphylococcus aureus leads to adaptive changes in central carbon metabolism. Metallomics. 2019;11:183–200.
  • Rutherford JC, Bird AJ. Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot Cell. 2004;3:1–13.
  • Saitoh Y, Izumitsu K, Morita A, et al. A copper-transporting ATPase BcCCC2 is necessary for pathogenicity of Botrytis cinerea. Mol Genet Genomics. 2010;284:33–43.
  • Parisot D, Dufresne M, Veneault C, et al. clap1, a gene encoding a copper-transporting ATPase involved in the process of infection by the phytopathogenic fungus Colletotrichum lindemuthianum. Mol Genet Genomics. 2002;268:139–151.