1,555
Views
7
CrossRef citations to date
0
Altmetric
Research Paper

Coxiella burnetii replicates in Galleria mellonella hemocytes and transcriptome mapping reveals in vivo regulated genes

, , , ORCID Icon & ORCID Icon
Pages 1268-1278 | Received 02 Apr 2020, Accepted 01 Sep 2020, Published online: 24 Sep 2020

References

  • Million M, Raoult D. Recent advances in the study of Q fever epidemiology, diagnosis and management. J Infect. 2015;71:S2–S9.
  • Angelakis E, Raoult D. Q fever. Vet Microbiol. 2010;140:297–309.
  • Honarmand H. Q Fever: an old but still a poorly understood disease. Interdiscip Perspect Infect Dis. 2012;2012:13192.
  • Maurin M, Raoult D. Q Fever. Clin Microbiol Rev. 1999;12:518–553.
  • Kohler LJ, Roy CR. Biogenesis of the lysosome-derived vacuole containing Coxiella burnetii. Microbes Infect. 2015;17:766–771.
  • Weber MM, Faris R. Subversion of the endocytic and secretory pathways by bacterial effector proteins. Front Cell Dev Biol. 2018;6:1.
  • Moffatt JH, Newton P, Newton HJ. Coxiella burnetii: turning hostility into a home. Cell Microbiol. 2015;17:621–631.
  • Abnave P, Muracciole X, Ghigo E. Coxiella burnetii lipopolysaccharide: what do we know? Int J Mol Sci. 2017;18:2509.
  • Moos A, Hackstadt T. Comparative virulence of intra- and interstrain lipopolysaccharide variants of Coxiella burnetii in the guinea pig model. Infect Immun. 1987;55:1144–1150.
  • Seshadri R, Paulsen IT, Eisen JA, et al. Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci USA. 2003;100:5455–5460.
  • Carey KL, Newton HJ, Luhrmann A, et al. The Coxiella burnetii Dot/Icm system delivers a unique repertoire of type IV effectors into host cells and is required for intracellular replication. PLoS Pathog. 2011;7:e1002056.
  • Newton HJ, McDonough JA, Roy CR. Effector protein translocation by the Coxiella burnetii Dot/Icm type IV secretion system requires endocytic maturation of the pathogen-occupied vacuole. PloS One. 2013;8:e54566.
  • Crabill E, Schofield WB, Newton HJ, et al. Dot/Icm-translocated proteins important for biogenesis of the Coxiella burnetii-containing vacuole identified by screening of an effector mutant sublibrary. Infect Immun. 2018;86:e00758–17.
  • Weber MM, Faris R, van Schaik EJ, et al. The type IV secretion system effector protein CirA stimulates the GTPase activity of RhoA and is required for virulence in a mouse model of Coxiella burnetii infection. Infect Immun. 2016;84:2524–2533.
  • Newton HJ, Kohler LJ, McDonough JA, et al. A screen of Coxiella burnetii mutants reveals important roles for Dot/Icm effectors and host autophagy in vacuole biogenesis. PLoS Pathog. 2014;10:e1004286.
  • Larson CL, Martinez E, Beare PA, et al. Right on Q: genetics begin to unravel Coxiella burnetii host cell interactions. Future Microbiol. 2016;11:919–939.
  • Graham JG, Winchell CG, Sharma UM, et al. Identification of ElpA, a Coxiella burnetii pathotype-specific Dot/Icm type IV secretion system substrate. Infect Immun. 2015;83:1190–1198.
  • Weber MM, Chen C, Rowin K, et al. Identification of Coxiella burnetii type IV secretion substrates required for intracellular replication and Coxiella-containing vacuole formation. J Bacteriol. 2013;195:3914–3924.
  • Voth DE, Beare PA, Howe D, et al. The Coxiella burnetii cryptic plasmid is enriched in genes encoding type IV secretion System substrates. J Bacteriol. 2011;193:1493–1503.
  • Omsland A, Cockrell DC, Howe D, et al. Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc Natl Acad Sci USA. 2009;106:4430–4434.
  • Norville IH, Hartley MG, Martinez E, et al. Galleria mellonella as an alternative model of Coxiella burnetii infection. Microbiology. 2014;160:1175–1181.
  • Tsai CJ, Loh JM, Proft T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence. 2016;7:214–229.
  • Champion OL, Titball RW, Bates S. Standardization of G. mellonella larvae to provide reliable and reproducible results in the study of fungal pathogens. J Fungi. 2018;4:108.
  • Metters G, Norville IH, Titball RW, et al. From cell culture to cynomolgus macaque: infection models show lineage-specific virulence potential of Coxiella burnetii. J Med Microbiol. 2019;68:1419–1430.
  • Browne N, Heelan M, Kavanagh K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence. 2013;4:597–603.
  • Selim A, Yang E, Rousset E, et al. Characterization of Coxiella burnetii strains from ruminants in a Galleria mellonella host-based model. New Microbes New Infect. 2018;24:8–13.
  • Martinez E, Allombert J, Cantet F, et al. Coxiella burnetii effector CvpB modulates phosphoinositide metabolism for optimal vacuole development. Proc Nat Acad Sci U.S.A. 2016;113:E3260–E9.
  • Omsland A, Beare PA, Hill J, et al. Isolation from animal tissue and genetic transformation of Coxiella burnetii are facilitated by an improved axenic growth medium. Appl Env Microbiol. 2011;77:3720–3725.
  • Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25:1105–1111.
  • Trapnell C, Roberts A, Goff L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–578.
  • Patro R, Duggal G, Love MI, et al. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417–419.
  • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
  • Leroy Q, Lebrigand K, Armougom F, et al. Coxiella burnetii transcriptional analysis reveals serendipity clusters of regulation in intracellular bacteria. PloS One. 2010;5:e15321.
  • Yu NY, Wagner JR, Laird MR, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010;26:1608–1615.
  • Tatusov RL, Galperin MY, Natale DA, et al. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28:33–36.
  • Sandoz KM, Sturdevant DE, Hansen B, et al. Developmental transitions of Coxiella burnetii grown in axenic media. J Microbiol Methods. 2014;96:104–110.
  • Sandoz KM, Popham DL, Beare PA, et al. Transcriptional profiling of Coxiella burnetii reveals extensive cell wall remodeling in the small cell variant developmental form. PloS One. 2016;11:e0149957.
  • Coleman SA, Fischer ER, Cockrell DC, et al. Proteome and antigen profiling of Coxiella burnetii developmental forms. Infect Immun. 2007;75:290–298.
  • Moormeier DE, Sandoz KM, Beare PA, et al. Coxiella burnetii RpoS regulates genes involved in morphological differentiation and intracellular growth. J Bacteriol. 2019;201:e00009–19.
  • Kovacs-Simon A, Hemsley CM, Scott AE, et al. Burkholderia thailandensis strain E555 is a surrogate for the investigation of Burkholderia pseudomallei replication and survival in macrophages. BMC Microbiol. 2019;19:97.
  • Martinez E, Cantet F, Fava L, et al. Identification of OmpA, a Coxiella burnetii protein involved in host cell invasion, by multi-phenotypic high-content screening. PLoS Pathog. 2014;10:e1004013.
  • Flores-Ramirez G, Janecek S, Miernyk JA, et al. In silico biosynthesis of virenose, a methylated deoxy-sugar unique to Coxiella burnetii lipopolysaccharide. Proteome Sci. 2012;10:67.
  • Beare PA, Jeffrey BM, Long CM, et al. Genetic mechanisms of Coxiella burnetii lipopolysaccharide phase variation. PLoS Pathog. 2018;14:e1006922.
  • Schramek S, Radziejewska-Lebrecht J, Mayer H. 3-C-branched aldoses in lipopolysaccharide of phase I Coxiella burnetii and their role as immunodominant factors. Eur J Biochem. 1985;148:455–461.
  • Hoover TA, Culp DW, Vodkin MH, et al. Chromosomal DNA deletions explain phenotypic characteristics of two antigenic variants, phase II and RSA 514 (crazy), of the Coxiella burnetii nine mile strain. Infect Immun. 2002;70:6726–6733.
  • Moses AS, Millar JA, Bonazzi M, et al. Horizontally acquired biosynthesis genes boost Coxiella burnetii’s physiology. Front Cell Infect Microbiol. 2017;7:174.
  • Woong Park S, Klotzsche M, Wilson DJ, et al. Evaluating the sensitivity of Mycobacterium tuberculosis to biotin deprivation using regulated gene expression. PLoS Pathog. 2011;7:e1002264.
  • Feng Y, Napier BA, Manandhar M, et al. A Francisella virulence factor catalyses an essential reaction of biotin synthesis. Mol Microbiol. 2014;91:300–314.
  • Beare PA, Unsworth N, Andoh M, et al. Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect Immun. 2009;77:642–656.
  • Kuley R, Bossers-deVries R, Smith HE, et al. Major differential gene regulation in Coxiella burnetii between in vivo and in vitro cultivation models. BMC Genomics. 2015;16:953.
  • Zusman T, Yerushalmi G, Segal G. Functional similarities between the Icm/Dot pathogenesis systems of Coxiella burnetii and Legionella pneumophila. Infect Immun. 2003;71:3714–3723.
  • Morgan JK, Luedtke BE, Thompson HA, et al. Coxiella burnetii type IVB secretion system region I genes are expressed early during the infection of host cells. FEMS Microbiol Lett. 2010;311:61–69.
  • Hemsley CM, O’Neill PA, Essex-Lopresti A, et al. Extensive genome analysis of Coxiella burnetii reveals limited evolution within genomic groups. BMC Genomics. 2019;20:441.
  • Skultety L, Hajduch M, Flores-Ramirez G, et al. Proteomic comparison of virulent phase I and avirulent phase II of Coxiella burnetii, the causative agent of Q fever. J Proteomics. 2011;74:1974–1984.
  • Begley M, Gahan CG, Kollas AK, et al. The interplay between classical and alternative isoprenoid biosynthesis controls gamma delta T cell bioactivity of Listeria monocytogenes. FEBS Lett. 2004;561:99–104.
  • Begley M, Bron PA, Heuston S, et al. Analysis of the isoprenoid biosynthesis pathways in Listeria monocytogenes reveals a role for the alternative 2-C-methyl-D-erythritol 4-phosphate pathway in murine infection. Infect Immun. 2008;76:5392–5401.
  • Schauer K, Geginat G, Liang C, et al. Deciphering the intracellular metabolism of Listeria monocytogenes by mutant screening and modelling. BMC Genomics. 2010;11:573.
  • Shin SJ, Wu CW, Steinberg H, et al. Identification of novel virulence determinants in Mycobacterium paratuberculosis by screening a library of insertional mutants. Infect Immun. 2006;74:3825–3833.
  • Lai YC, Peng HL, Chang HY. Identification of genes induced in vivo during Klebsiella pneumoniae CG43 infection. Infect Immun. 2001;69:7140–7145.
  • Heuston S, Begley M, Gahan CGM, et al. Isoprenoid biosynthesis in bacterial pathogens. Microbiology. 2012;158:1389–1401.
  • Beare PA, Sandoz KM, Larson CL, et al. Essential role for the response regulator PmrA in Coxiella burnetii type 4B secretion and colonization of mammalian host cells. J Bacteriol. 2014;196:1925–1940.
  • Voth DE, Heinzen RA. Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii. Cell Microbiol. 2007;9:829–840.