1,723
Views
6
CrossRef citations to date
0
Altmetric
Research Paper

YSIRK-G/S-directed translocation is required for Streptococcus suis to deliver diverse cell wall anchoring effectors contributing to bacterial pathogenicity

, , , , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1539-1556 | Received 11 Apr 2020, Accepted 14 Oct 2020, Published online: 02 Nov 2020

References

  • Bonifait L, Veillette M, Letourneau V, et al. Detection of Streptococcus suis in bioaerosols of swine confinement buildings. Appl Environ Microbiol. 2014;80:3296–3304.
  • Goyette-Desjardins G, Auger JP, Xu J, et al. Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg Microbes Infect. 2014;3:e45.
  • Fittipaldi N, Segura M, Grenier D, et al. Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiol. 2012;7:259–279.
  • Boekhorst J, de Been MW, Kleerebezem M, et al. Genome-wide detection and analysis of cell wall-bound proteins with LPxTG-like sorting motifs. J Bacteriol. 2005;187:4928–4934.
  • Robb M, Hobbs JK, Woodiga SA, et al. Molecular Characterization of N-glycan Degradation and Transport in Streptococcus pneumoniae and Its Contribution to Virulence. PLoS Pathog. 2017;13:e1006090.
  • Nandakumar KS, Collin M, Happonen KE, et al. Streptococcal Endo-beta-N-Acetylglucosaminidase suppresses antibody-mediated inflammation In Vivo. Front Immunol. 2018;9:1623.
  • Shadnezhad A, Naegeli A, Sjogren J, et al. EndoSd: an IgG glycan hydrolyzing enzyme in Streptococcus dysgalactiae subspecies dysgalactiae. Future Microbiol. 2016;11:721–736.
  • Smith HE, Vecht U, Wisselink HJ, et al. Mutants of Streptococcus suis types 1 and 2 impaired in expression of muramidase-released protein and extracellular protein induce disease in newborn germfree pigs. Infect Immun. 1996;64:4409–4412.
  • D’Gama JD, Ma Z, Zhang H, et al. A conserved streptococcal virulence regulator controls the expression of a distinct class of M-Like proteins. mBio. 2019;10(5):e02500–19.
  • Osaki M, Takamatsu D, Shimoji Y, et al. Characterization of Streptococcus suis genes encoding proteins homologous to sortase of gram-positive bacteria. J Bacteriol. 2002;184:971–982.
  • Roche FM, Massey R, Peacock SJ, et al. Characterization of novel LPXTG-containing proteins of Staphylococcus aureus identified from genome sequences. Microbiology. 2003;149:643–654.
  • Sibbald MJ, Ziebandt AK, Engelmann S, et al. Mapping the pathways to staphylococcal pathogenesis by comparative secretomics. Microbiol Mol Biol Rev. 2006;70:755–788.
  • Bae T, Schneewind O. The YSIRK-G/S motif of staphylococcal protein A and its role in efficiency of signal peptide processing. J Bacteriol. 2003;185:2910–2919.
  • DeDent A, Bae T, Missiakas DM, et al. Signal peptides direct surface proteins to two distinct envelope locations of Staphylococcus aureus. Embo J. 2008;27:2656–2668.
  • Brega S, Caliot E, Trieu-Cuot P, et al. SecA localization and SecA-dependent secretion occurs at new division septa in group B Streptococcus. PloS One. 2013;8:e65832.
  • Carlsson F, Stalhammar-Carlemalm M, Flardh K, et al. Signal sequence directs localized secretion of bacterial surface proteins. Nature. 2006;442:943–946.
  • Tsui HC, Keen SK, Sham LT, et al. Dynamic distribution of the SecA and SecY translocase subunits and septal localization of the HtrA surface chaperone/protease during Streptococcus pneumoniae D39 cell division. mBio. 2011;2(5):e00202–11.
  • Costa TR, Felisberto-Rodrigues C, Meir A, et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nature Rev Microbiol. 2015;13:343–359.
  • Ma F, Guo X, Fan H. Extracellular nucleases of streptococcus equi subsp. zooepidemicus degrade neutrophil extracellular traps and impair macrophage activity of the host. Appl Environ Microbiol. 2017;83(2):02468–16.
  • Dai J, Lai L, Tang H, et al. Streptococcus suis synthesizes deoxyadenosine and adenosine by 5ʹ-nucleotidase to dampen host immune responses. Virulence. 2018;9:1509–1520.
  • Lynskey NN, Reglinski M, Calay D, et al. Multi-functional mechanisms of immune evasion by the streptococcal complement inhibitor C5a peptidase. PLoS Pathog. 2017;13:e1006493.
  • Li Q, Fu Y, Ma C, et al. The non-conserved region of MRP is involved in the virulence of Streptococcus suis serotype 2. Virulence. 2017;8:1274–1289.
  • Bonifait L, Vaillancourt K, Gottschalk M, et al. Purification and characterization of the subtilisin-like protease of Streptococcus suis that contributes to its virulence. Vet Microbiol. 2011;148:333–340.
  • Wu Z, Wu C, Shao J, et al. The Streptococcus suis transcriptional landscape reveals adaptation mechanisms in pig blood and cerebrospinal fluid. Rna. 2014;20:882–898.
  • Wei Z, Cheng PL. Immunoproteomics of extracellular proteins of Chinese virulent strains ofStreptococcus suis type 2. Proteomics. 2007;7:4468–4476.
  • Ma J, Bao Y, Sun M, et al. Two functional type VI secretion systems in avian pathogenic escherichia coli are involved in different pathogenic pathways. Infect Immun. 2015;83:3867–3879.
  • Zaccaria E, Wels M, van Baarlen P, et al. Temporal regulation of the transformasome and competence development in streptococcus suis. Front Microbiol. 2016;7:1922.
  • Zhu Y, Dong W, Ma J, et al. Utilization of the ComRS system for the rapid markerless deletion of chromosomal genes in Streptococcus suis. Future Microbiol. 2019;14:207–222.
  • Zhu W, Wu C, Sun X, et al. Characterization of Streptococcus suis serotype 2 isolates from China. Vet Microbiol. 2013;166:527–534.
  • Dominguez-Punaro MC, Segura M, Plante MM, et al. Streptococcus suis serotype 2, an important swine and human pathogen, induces strong systemic and cerebral inflammatory responses in a mouse model of infection. J Iimmunol. 2007;179:1842–1854.
  • Seitz M, Beineke A, Seele J, et al. A novel intranasal mouse model for mucosal colonization by Streptococcus suis serotype 2. J Med Microbiol. 2012;61:1311–1318.
  • Gao T, Tan M, Liu W, et al. GidA, a tRNA modification enzyme, contributes to the growth, and virulence of streptococcus suis serotype 2. Front Cell Infect Microbiol. 2016;6:44.
  • Zhong X, Zhang Y, Zhu Y, et al. The two-component signaling system vrasrss is critical for multidrug resistance and full virulence in streptococcus suis serotype 2. Infect Immun. 2018;86(7):e00096–18.
  • Vanier G, Segura M, Friedl P, et al. Invasion of porcine brain microvascular endothelial cells by Streptococcus suis serotype 2. Infect Immun. 2004;72:1441–1449.
  • Geer LY, Domrachev M, Lipman DJ, et al. CDART: protein homology by domain architecture. Genome Res. 2002;12:1619–1623.
  • Kelley LA, Mezulis S, Yates CM, et al. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–858.
  • Kelley LA, Sternberg MJE. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc. 2009;4:363–371.
  • Bingle LE, Bailey CM, Pallen MJ. Type VI secretion: a beginner’s guide. Curr Opin Microbiol. 2008;11:3–8.
  • Zhong X, Zhang Y, Zhu Y, et al. Identification of an autorepressing two-component signaling system that modulates virulence in streptococcus suis serotype 2. Infect Immun. 2019;87:e0037719.
  • Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods. 2000;25:402–408.
  • Sayed N, Nonin-Lecomte S, Rety S, et al. Functional and structural insights of a Staphylococcus aureus apoptotic-like membrane peptide from a toxin-antitoxin module. J Biol Chem. 2012;287:43454–43463.
  • Siegel SD, Reardon ME, Ton-That H. Anchoring of LPXTG-like proteins to the gram-positive cell wall envelope. Curr Top Microbiol Immunol. 2017;404:159–175.
  • Hendrickx AP, Willems RJ, Bonten MJ, et al. LPxTG surface proteins of enterococci. Trends Microbiol. 2009;17:423–430.
  • Bek-Thomsen M, Poulsen K, Kilian M. Occurrence and evolution of the paralogous zinc metalloproteases IgA1 protease, ZmpB, ZmpC, and ZmpD in Streptococcus pneumoniae and related commensal species. mBio. 2012;3(5):e00303–12.
  • Ma J, Sun M, Dong W, et al. PAAR-Rhs proteins harbor various C-terminal toxins to diversify the antibacterial pathways of type VI secretion systems. Environ Microbiol. 2017;19:345–360.
  • Ma J, Pan Z, Huang J, et al. The Hcp proteins fused with diverse extended-toxin domains represent a novel pattern of antibacterial effectors in type VI secretion systems. Virulence. 2017;8:1189–1202.
  • Gu H, Zhu H, Lu C. Use of in vivo-induced antigen technology (IVIAT) for the identification of Streptococcus suis serotype 2 in vivo-induced bacterial protein antigens. BMC Microbiol. 2009;9:201.
  • Cleary PP, Prahbu U, Dale JB, et al. Streptococcal C5a peptidase is a highly specific endopeptidase. Infect Immun. 1992;60:5219–5223.
  • Tamura GS, Kuypers JM, Smith S, et al. Adherence of group B streptococci to cultured epithelial cells: roles of environmental factors and bacterial surface components. Infect Immun. 1994;62:2450–2458.
  • Smith HE, Damman M, van der Velde J, et al. Identification and characterization of the cps locus of Streptococcus suis serotype 2: the capsule protects against phagocytosis and is an important virulence factor. Infect Immun. 1999;67:1750–1756.
  • Beulin DSJ, Radhakrishnan D, Suresh SC, et al. Streptococcus pneumoniae surface protein PfbA is a versatile multidomain and multiligand-binding adhesin employing different binding mechanisms. Febs J. 2017;284:3404–3421.
  • Fu L, Zhao J, Lin L, et al. Characterization of IgA1 protease as a surface protective antigen of Streptococcus suis serotype 2. Microbes Infect. 2016;18:285–289.
  • Kotelnikova O, Alliluev A, Zinchenko A, et al. Protective potency of recombinant meningococcal IgA1 protease and its structural derivatives upon animal invasion with meningococcal and pneumococcal infections. Microbes Infect. 2019;21:336–340.
  • Lannergard J, Guss B. IdeE, an IgG-endopeptidase of Streptococcus equi ssp equi. FEMS Microbiol Lett. 2006;262:230–235.
  • von Pawel-rammingen U, Johansson BP, Bjorck L. IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. Embo J. 2002;21:1607–1615.
  • Vaillancourt K, Bonifait L, Grignon L, et al. Identification and characterization of a new cell surface protein possessing factor H-binding activity in the swine pathogen and zoonotic agent Streptococcus suis. J Med Microbiol. 2013;62:1073–1080.
  • Seele J, Singpiel A, Spoerry C, et al. Identification of a novel host-specific IgM protease in Streptococcus suis. J Bacteriol. 2013;195:930–940.
  • Dumesnil A, Auger JP, Roy D, et al. Characterization of the zinc metalloprotease of Streptococcus suis serotype 2. Vet Res. 2018;49:109.
  • Haas B, Isolation GD. Characterization and biological properties of membrane vesicles produced by the swine pathogen streptococcus suis. PloS One. 2015;10:e0130528.
  • Zhang W, Lu CP. Immunoproteomics of extracellular proteins of Chinese virulent strains of Streptococcus suis type 2. Proteomics. 2007;7:4468–4476.
  • Ferrando ML, Fuentes S, de Greeff A, et al. ApuA, a multifunctional alpha-glucan-degrading enzyme of Streptococcus suis, mediates adhesion to porcine epithelium and mucus. Microbiology. 2010;156:2818–2828.
  • Wan Y, Zhang S, Li L, et al. Characterization of a novel streptococcal heme-binding protein SntA and its interaction with host antioxidant protein AOP2. Microb Pathog. 2017;111:145–155.
  • Deng S, Xu T, Fang Q, et al. The surface-exposed protein SntA contributes to complement evasion in zoonotic streptococcus suis. Front Immunol. 2018;9:1063.
  • Okura M, Osaki M, Fittipaldi N, et al. The minor pilin subunit Sgp2 is necessary for assembly of the pilus encoded by the srtG cluster of Streptococcus suis. J Bacteriol. 2011;193:822–831.
  • Xiao G, Wu Z, Zhang S, et al. Mac protein is not an essential virulence factor for the virulent reference strain streptococcus suis P1/7. Curr Microbiol. 2017;74:90–96.
  • Pluvinage B, Chitayat S, Ficko-Blean E, et al. Conformational analysis of StrH, the surface-attached exo-beta-D-N-acetylglucosaminidase from Streptococcus pneumoniae. J Mol Biol. 2013;425:334–349.
  • Pluvinage B, Stubbs KA, Hattie M, et al. Inhibition of the family 20 glycoside hydrolase catalytic modules in the Streptococcus pneumoniae exo-beta-D-N-acetylglucosaminidase, StrH. Org Biomol Chem. 2013;11:7907–7915.
  • Maestro B, Sanz JM. Choline binding proteins from streptococcus pneumoniae: a dual role as enzybiotics and targets for the design of new antimicrobials. Antibiotics. 2016;5(2):21.
  • Heden LO, Frithz E, Lindahl G. Molecular characterization of an IgA receptor from group B streptococci: sequence of the gene, identification of a proline-rich region with unique structure and isolation of N-terminal fragments with IgA-binding capacity. Eur J Immunol. 1991;21:1481–1490.
  • Jobichen C, Tan YC, Prabhakar MT, et al. Structure of ScpC, a virulence protease from Streptococcus pyogenes, reveals the functional domains and maturation mechanism. Biochem J. 2018;475:2847–2860.
  • Mao Y, Fan H, Lu C. Immunoproteomic assay of extracellular proteins in Streptococcus equi ssp. zooepidemicus. FEMS Microbiol Lett. 2008;286:103–109.
  • Lin HX, Huang DY, Wang Y, et al. A novel vaccine against Streptococcus equi ssp. zooepidemicus infections: the recombinant swinepox virus expressing M-like protein. Vaccine. 2011;29:7027–7034.