1,802
Views
6
CrossRef citations to date
0
Altmetric
Research Paper

Time-resolved analysis of Staphylococcus aureus invading the endothelial barrier

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1623-1639 | Received 08 Aug 2020, Accepted 22 Oct 2020, Published online: 22 Nov 2020

References

  • Archer NK, Mazaitis MJ, William Costerton J, et al. Staphylococcus Aureus biofilms. Virulence. 2011;2(5):445–459.
  • Lowy FD. Staphylococcus Aureus infections. N Engl J Med. 1998;339(8):520–532.
  • Lowy FD. Is Staphylococcus Aureus an intracellular pathogen? Trends Microbiol. 2000;8(8):341–343.
  • Balasubramanian D, Harper L, Shopsin B, et al. Staphylococcus Aureus pathogenesis in diverse host environments. Pathog Dis. 2017;75(1):ftx005.
  • Goerke C, Wolz C. Regulatory and genomic plasticity of Staphylococcus Aureus during persistent colonization and infection. Int J Med Microbiol. 2004;294(2–3):195–202.
  • Goldenberg NM, Steinberg BE, Slutsky AS, et al. Broken barriers: a new take on sepsis pathogenesis. Sci Transl Med. 2011;3(88):88ps25–88ps25.
  • Zhao X, Chlebowicz-Flissikowska MA, Wang M, et al. Exoproteomic profiling uncovers critical determinants for virulence of livestock-associated and human-originated Staphylococcus Aureus ST398 strains. Virulence. 2020;11(1):947–963.
  • Zhao X, Palma Medina LM, Stobernack T, et al. Exoproteome heterogeneity among closely related Staphylococcus Aureus T437 isolates and possible implications for virulence. J Proteome Res. 2019;18(7):2859–2874.
  • Ortwine JK, Bhavan K. Morbidity, mortality, and management of methicillin-resistant S. Aureus bacteremia in the USA: update on antibacterial choices and understanding. Hosp Pract. 2018;46(2):64–72.
  • Mekonnen SA, Palma Medina LM, Glasner C, et al. Signatures of cytoplasmic proteins in the exoproteome distinguish community- and hospital-associated methicillin-resistant Staphylococcus Aureus USA300 lineages. Virulence. 2017;8(6):891–907.
  • Thurlow LR, Joshi GS, Richardson AR. Virulence strategies of the dominant USA300 lineage of community-associated methicillin-resistant Staphylococcus Aureus(CA-MRSA). FEMS Immunol Med Microbiol. 2012;65(1):5–22.
  • Daniel AE, van Buul JD. Endothelial junction regulation: a prerequisite for leukocytes crossing the vessel wall. J Innate Immun. 2013;5(4):324–335.
  • Dejana E. Endothelial cell–cell junctions: happy together. Nat Rev Mol Cell Biol. 2004;5(4):261–270.
  • Lemichez E, Lecuit M, Nassif X, et al. Breaking the wall: targeting of the endothelium by pathogenic bacteria. Nature Rev Microbiol. 2010;8(2):93–104.
  • Sahni SK. Endothelial cell infection and hemostasis. Thromb Res. 2007;119(5):531–549.
  • Rollin G, Tan X, Tros F, et al. Intracellular survival of Staphylococcus Aureus in endothelial cells: a matter of growth or persistence. Front Microbiol. 2017;8:1354.
  • Werdan K, Dietz S, Löffler B, et al. Mechanisms of infective endocarditis: pathogen–host interaction and risk states. Nat Rev Cardiol. 2014;11(1):35–50.
  • Palma Medina L. M, Laura M, Becker A-K, et al. Metabolic cross-talk between human bronchial epithelial cells and internalized Staphylococcus Aureus as a driver for infection. Mol Cell Proteomics. 2019;18(5):892–908.
  • Fraunholz M, Sinha B. Intracellular Staphylococcus Aureus: live-in and let die. Front Cell Infect Microbiol. 2012;2:43.
  • Horn J, Stelzner K, Rudel T, et al. Inside job: staphylococcus Aureus host-pathogen interactions. Int J Med Microbiol. 2018;308(6):607–624.
  • Lehar SM, Pillow T, Xu M, et al. Novel antibody–antibiotic conjugate eliminates intracellular S. aureus. Nature. 2015;527(7578):323–328.
  • Mekonnen SA, Palma Medina LM, Michalik S, Loreti MG, Gesell Salazar M, van Dijl JM, Völker U. Metabolic niche adaptation of community- and hospital-associated methicillin-resistant Staphylococcus aureus. Journal of Proteomics 2019 Feb 20;193:154–161. doi: https://doi.org/10.1016/j.jprot.2018.10.005.
  • Mäder U, Nicolas P, Depke M, et al. Staphylococcus Aureus transcriptome architecture: from laboratory to infection-mimicking conditions. PLoS Genet. 2016;12(4):e1005962. .
  • Herbert S, Ziebandt A-K, Ohlsen K, et al. Repair of global regulators in Staphylococcus Aureus 8325 and comparative analysis with other clinical isolates. Infect Immun. 2010;78(6):2877–2889.
  • Liese J, Rooijakkers SHM, van Strijp JAG, et al. Intravital two-photon microscopy of host-pathogen interactions in a mouse model of Staphylococcus Aureus skin abscess formation. Cell Microbiol. 2013;15(6):891–909.
  • Pförtner H, Wagner J, Surmann K, et al. A proteomics workflow for quantitative and time-resolved analysis of adaptation reactions of internalized bacteria. Methods, Quantitative Proteomics. 2013;61(3):244–250.
  • Francia V, Aliyandi A, Salvati A. Effect of the development of a cell barrier on nanoparticle uptake in endothelial cells. Nanoscale. 2018;10(35):16645–16656.
  • Sanne van den B, Bonarius HPJ, van Kessel KPM, et al. A human monoclonal antibody targeting the conserved staphylococcal antigen IsaA protects mice against Staphylococcus Aureus bacteremia. Int J Med Microbiol. 2015;305(1):55–64.
  • Spaan AN, Henry T, van Rooijen WJM, et al. The staphylococcal toxin panton-valentine leukocidin targets human C5a receptors. Cell Host Microbe. 2013;13(5):584–594.
  • Tromp AT, Van Gent M, Abrial P, et al. Human CD45 is an F-component-specific receptor for the staphylococcal toxin panton–valentine leukocidin. Nat Microbiol. 2018;3(6):708–717.
  • Stobernack T, du Teil Espina M, Mulder LM, et al. A secreted bacterial peptidylarginine deiminase can neutralize human innate immune defenses. MBio. 2018;9(5):e01704–18..
  • Kubota Y, Kleinman HK, Martin GR, et al. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol. 1988;107(4):1589–1598.
  • Park H-J, Zhang Y, Georgescu SP, et al. Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis. Stem Cell Rev. 2006;2:93–101.
  • Surmann K, Michalik S, Hildebrandt P, et al. Comparative proteome analysis reveals conserved and specific adaptation patterns of Staphylococcus Aureus after internalization by different types of human non-professional phagocytic host cells. Front Microbiol. 2014;5:392.
  • Grosz M, Kolter J, Paprotka K, et al. Cytoplasmic replication of S taphylococcus aureus upon phagosomal escape triggered by phenol-soluble modulin α. Cellular Microbiology. 2014;16(4):451–465..
  • Jarry TM, Cheung AL. Staphylococcus Aureus escapes more efficiently from the phagosome of a cystic fibrosis bronchial epithelial cell line than from its normal counterpart. Infect Immun. 2006;74(5):2568–2577.
  • Kubica M, Guzik K, Koziel J, et al. A potential new pathway for Staphylococcus Aureus dissemination: the silent survival of s. Aureus phagocytosed by human monocyte-derived macrophages edited by Robin May. PLoS ONE. 2008;3(1):e1409.
  • Schröder A, Kland R, Peschel A, et al. Live cell imaging of phagosome maturation in Staphylococcus Aureus infected human endothelial cells: small colony variants are able to survive in lysosomes. Med Microbiol Immunol. 2006;195(4):185–194.
  • Tranchemontagne ZR, Camire RB, O’Donnell VJ, et al. Staphylococcus Aureus strain USA300 Perturbs acquisition of lysosomal enzymes and requires phagosomal acidification for survival inside macrophages. Infect Immun. 2016;84(1):241–253.
  • Lâm T-T, Giese B, Chikkaballi D, et al. Phagolysosomal integrity is generally maintained after Staphylococcus Aureus invasion of nonprofessional phagocytes but is modulated by strain 6850. Infect Immun. 2010;78(8):3392–3403.
  • Saftig P, Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol. 2009;10(9):623–635.
  • Sinha B, Fraunholz M. Staphylococcus aureus host cell invasion and post-invasion events. Int J Med Microbiol. 2010;300(2–3):170–175.
  • Brown ML, Patrick O’Hara F, Close NM, et al. Prevalence and sequence variation of panton-valentine leukocidin in methicillin-resistant and methicillin-susceptible Staphylococcus Aureus strains in the United States. J Clin Microbiol. 2012;50(1):86–90.
  • Palma Medina, LP, Becker A-K, Michalik S, et al. Interaction of Staphylococcus Aureus and host cells upon infection of bronchial epithelium during different stages of regeneration. ACS Infect Dis. 2020;6(8):2279–2290.
  • Josse J, Laurent F, Diot A. Staphylococcal adhesion and host cell invasion: fibronectin-binding and other mechanisms. Front Microbiol. 2017;8:2433.
  • Lubkin A, Torres VJ. Bacteria and endothelial cells: a toxic relationship. Curr Opin Microbiol. 2017;35:58–63. .
  • Becker KA, Fahsel B, Kemper H, et al. Staphylococcus Aureus alpha-toxin disrupts endothelial-cell tight junctions via acid sphingomyelinase and ceramide. Infect Immun. 2017;86(1):e00606–17.
  • Dupuy AG, Caron E. Integrin-dependent phagocytosis - spreading from microadhesion to new concepts. J Cell Sci. 2008;121(11):1773–1783.
  • Flannagan RS, Heit B, Heinrichs DE. Intracellular replication of Staphylococcus Aureus in mature phagolysosomes in macrophages precedes host cell death, and bacterial escape and dissemination: S. Aureus replicates in mature phagolysosomes in macrophages. Cell Microbiol. 2016;18(4):514–535.
  • Flannagan RS, Kuiack RC, McGavin MJ, et al. Staphylococcus Aureus uses the GraXRS regulatory system to sense and adapt to the acidified phagolysosome in macrophages. Edited by Victor J. Torres. , /mbio/9/4/mBio.01143-18.atom MBio. 2018;94:e01143–18.
  • Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nature Rev Microbiol. 2017;15(8):453–464.
  • Lacoma A, Cano V, Moranta D, et al. Investigating intracellular persistence of Staphylococcus Aureus within a murine alveolar macrophage cell line. Virulence. 2017;8(8):1761–1775.
  • Löffler B, Tuchscherr L, Niemann S, et al. Staphylococcus Aureus persistence in non-professional phagocytes. Int J Med Microbiol. 2014;304(2):170–176.
  • Olivier AC, Lemaire S, Van Bambeke F, et al. Role of rsbU and Staphyloxanthin in phagocytosis and intracellular growth of staphylococcus aureus in human macrophages and endothelial cells. J Infect Dis. 2009;200(9):1367–1370.