2,016
Views
16
CrossRef citations to date
0
Altmetric
Research Paper

MoSec61β, the beta subunit of Sec61, is involved in fungal development and pathogenicity, plant immunity, and ER-phagy in Magnaporthe oryzae

, , , ORCID Icon, ORCID Icon & ORCID Icon
Pages 1685-1700 | Received 19 Aug 2020, Accepted 07 Nov 2020, Published online: 29 Nov 2020

References

  • Couch BC, Kohn LM. A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia. 2002;94:683–693. PMID:21156541.
  • Dean RA. Signal pathways and appressorium morphogenesis. Annu Rev Phytopathol. 1997;35:211–234. PMID:15012522.
  • Thines E, Weber RW, Talbot NJ. MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell. 2000;12:1703–1718. PMID:11006342.
  • Peng Y, van Wersch R, Zhang Y. Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity. Mol Plant Microbe Interact. 2018;31:403–409. PMID:29135338.
  • Medzhitov R, Janeway CJ. Innate immunity: the virtues of a nonclonal system of recognition. CELL. 1997;91:295–298. PMID:9363937.
  • Zhou Z, Pang Z, Li G, et al. Endoplasmic reticulum membrane-bound MoSec62 is involved in the suppression of rice immunity and is essential for the pathogenicity of Magnaporthe oryzae. Mol Plant Pathol. 2016;17:1211–1222. PMID:26679839.
  • Wang C, Liu Y, Liu L, et al. The biotrophy-associated secreted protein 4 (BAS4) participates in the transition of Magnaporthe oryzae from the biotrophic to the necrotrophic phase. Saudi J Biol Sci. 2019;26:795–807. PMID:31049006.
  • Kankanala P, Czymmek K, Valent B. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell. 2007;19:706–724. PMID:17322409.
  • Khang CH, Berruyer R, Giraldo MC, et al. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell. 2010;22:1388–1403. PMID:20435900.
  • Giraldo MC, Dagdas YF, Gupta YK, et al. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat Commun. 2013;4:1996. PMID:23774898.
  • Wang Y, Wang Y. Trick or treat: microbial pathogens evolved apoplastic effectors modulating plant susceptibility to infection. Mol Plant Microbe Interact. 2018;31:6–12. PMID:29090656.
  • Mentlak TA, Kombrink A, Shinya T, et al. Effector-mediated suppression of chitin-triggered immunity by magnaporthe oryzae is necessary for rice blast disease. Plant Cell. 2012;24:322–335. PMID:22267486.
  • Viotti C. ER to golgi-dependent protein secretion: the conventional pathway. Methods Mol Biol. 2016;1459:3–29. PMID:27665548.
  • Nie H, Zhang L, Zhuang H, et al. Secreted protein MoHrip2 is required for full virulence of Magnaporthe oryzae and modulation of rice immunity. Appl Microbiol Biotechnol. 2019;103:6153–6167. PMID:31154490.
  • Zhang S, Xu JR. Effectors and effector delivery in Magnaporthe oryzae. PLOS Pathog. 2014;10:e1003826. PMID:24391496.
  • Polgar N, Lee AJ, Lui VH, et al. The exocyst gene Sec10 regulates renal epithelial monolayer homeostasis and apoptotic sensitivity. Am J Physiol Cell Physiol. 2015;309:C190–201. PMID:26040895.
  • Bebok Z, Mazzochi C, King SA, et al. The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61beta and a cytosolic, deglycosylated intermediary. J Biol Chem. 1998;273:29873–29878. PMID:9792704.
  • Mothes W, Prehn S, Rapoport TA. Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane. Embo J. 1994;13:3973–3982. PMID:8076593.
  • Esnault Y, Blondel MO, Deshaies RJ, et al. The yeast SSS1 gene is essential for secretory protein translocation and encodes a conserved protein of the endoplasmic reticulum. Embo J. 1993;12:4083–4093. PMID:8223425.
  • Feng D, Zhao X, Soromani C, et al. The transmembrane domain is sufficient for Sbh1p function, its association with the Sec61 complex, and interaction with Rtn1p. Journal of Biological Chemistry. 2007;282(42):30618–30628. PMID:17699516.
  • Kelkar A, Dobberstein B. Sec61beta, a subunit of the Sec61 protein translocation channel at the endoplasmic reticulum, is involved in the transport of Gurken to the plasma membrane. Bmc Cell Biol. 2009;10:11. PMID:19226464.
  • Zhang WJ, Hanisch S, Kwaaitaal M, et al. A component of the Sec61 ER protein transporting pore is required for plant susceptibility to powdery mildew. Front Plant Sci. 2013;4:127. PMID:23720664.
  • Wang ZY, Soanes DM, Kershaw MJ, et al. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection. Mol Plant Microbe Interact. 2007;20:475–491. PMID:17506326.
  • Li R, Jia Z, Trush MA. Defining ROS in biology and medicine. React Oxyg Species (Apex). 2016;1:9–21. PMID:29707643.
  • Nakashita H, Yoshioka K, Takayama M, et al. Characterization of PBZ1, a probenazole-inducible gene, in suspension-cultured rice cells. Biosci Biotechnol Biochem. 2001;65:205–208. PMID:11272832.
  • Wang C, Li C, Duan G, et al. Overexpression of Magnaporthe oryzae systemic defense trigger 1 (MoSDT1) confers improved rice blast resistance in rice. Int J Mol Sci. 2019;20. PMID:31557947. DOI:https://doi.org/10.3390/ijms20194762.
  • Luna E, Pastor V, Robert J, et al. Callose deposition: a multifaceted plant defense response. Mol Plant Microbe Interact. 2011;24:183–193. PMID:20955078.
  • Lang S, Pfeffer S, Lee PH, et al. An update on Sec61 channel functions, mechanisms, and related diseases. Front Physiol. 2017;8:887. PMID:29163222.
  • Chino H, Mizushima N. ER-Phagy: quality control and turnover of endoplasmic reticulum. Trends Cell Biol. 2020;30:384–398. PMID:32302550.
  • Hwang J, Qi L. Quality control in the endoplasmic reticulum: crosstalk between ERAD and UPR pathways. Trends Biochem Sci. 2018;43:593–605. PMID:30056836.
  • Tang W, Jiang H, Aron O, et al. Endoplasmic reticulum-associated degradation mediated by MoHrd1 and MoDer1 is pivotal for appressorium development and pathogenicity of Magnaporthe oryzae. Environ Microbiol. 2020. PMID:32410295. DOI:https://doi.org/10.1111/1462-2920.15069.
  • Chen XL, Liu C, Tang B, et al. Quantitative proteomics analysis reveals important roles of N-glycosylation on ER quality control system for development and pathogenesis in Magnaporthe oryzae. Plos Pathog. 2020;16:e1008355. PMID:32092131.
  • Yi M, Chi MH, Khang CH, et al. The ER chaperone LHS1 is involved in asexual development and rice infection by the blast fungus Magnaporthe oryzae. Plant Cell. 2009;21:681–695. PMID:19252083.
  • Toikkanen JH, Miller KJ, Soderlund H, et al. The beta subunit of the Sec61p endoplasmic reticulum translocon interacts with the exocyst complex in Saccharomyces cerevisiae. J Biol Chem. 2003;278:20946–20953. PMID:12665530.
  • Liu XH, Lu JP, Zhang L, et al. Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Eukaryot Cell. 2007;6:997–1005. PMID:17416896.
  • Romisch K. Endoplasmic reticulum-associated degradation. Annu Rev Cell Dev Biol. 2005;21:435–456. PMID:16212502.
  • Bernales S, Schuck S, Walter P. ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy. 2007;3:285–287. PMID:17351330.
  • Talbot NJ, Ebbole DJ, Hamer JE. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell. 1993;5:1575–1590. PMID:8312740.
  • Cao H, Huang P, Zhang L, et al. Characterization of 47 Cys2 -His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. New Phytol. 2016;211:1035–1051. PMID:27041000.
  • Kim S, Ahn IP, Rho HS, et al. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Mol Microbiol. 2005;57:1224–1237. PMID:16101997.
  • Howard RJ, Ferrari MA, Roach DH, et al. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA. 1991;88:11281–11284. PMID:1837147.