1,730
Views
7
CrossRef citations to date
0
Altmetric
Research Paper

Roles of the Hcp family proteins in the pathogenicity of Salmonella typhimurium 14028s

, , , &
Pages 1716-1726 | Received 19 Feb 2020, Accepted 18 Nov 2020, Published online: 10 Dec 2020

References

  • Lasica AM, Ksiazek M, Madej M, et al. The type IX secretion system (T9SS): highlights and recent insights into its structure and function. Front Cell Infect Microbiol. 2015;7:215.
  • Abby SS, Rocha EPC. Identification of protein secretion systems in bacterial genomes using MacSyFinder. Sci Rep. 2016;6. DOI:https://doi.org/10.1007/978-1-4939-7033-9_1
  • Stefan P, Ma AT, Derek S, et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A. 2006. DOI:https://doi.org/10.1073/pnas.0510322103
  • Macintyre DL, Miyata ST, Maya K, et al. The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci U S A. 2010;107:19520–19524.
  • Sana TG, Flaugnatti N, Lugo KA, et al. Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci U S A. 2016;113:E5044-E5051.
  • Sandra S, Hood RD, Mougous JD. What is type VI secretion doing in all those bugs? Trends Microbiol. 2010. DOI:https://doi.org/10.1016/j.tim.2010.09.001
  • Boyer F, Fichant G, Berthod J, et al. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics. 2009;10:104.
  • Kirk MD, Pires SM, Black RE, et al. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. PLoS Med. 2015. DOI:https://doi.org/10.1371/journal.pmed.1001921
  • Havelaar AH, Kirk MD, Torgerson PR, et al. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med. 2015;12:e1001923.
  • Fields PI, Swanson RV, Haidaris CG, et al. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci U S A. 1986;83:5189–5193.
  • Herrero-Fresno A, Olsen JE. Salmonella Typhimurium metabolism affects virulence in the host – a mini-review. Food Microbiol. 2018;71:98.
  • Mulder DT, Cooper CA, Coombes BK. Type VI secretion system-associated gene clusters contribute to pathogenesis of Salmonella enterica serovar Typhimurium. Infect Immun. 2012;80:1996–2007.
  • Pezoa D, Blondel CJ, Silva CA, et al. Only one of the two type VI secretion systems encoded in the Salmonella enterica serotype Dublin genome is involved in colonization of the avian and murine hosts. Vet Res. 2014;45:2.
  • Holden DW. Trafficking of the Salmonella vacuole in macrophages. Traffic. 2010. DOI:https://doi.org/10.1034/j.1600-0854.2002.030301.x
  • Riquelme S, Varas M, Valenzuela C, et al. Relevant genes linked to virulence are required for salmonellatyphimurium to survive intracellularly in the social amoeba dictyostelium discoideum. Front Microbiol. 2016;7. DOI:https://doi.org/10.3389/fmicb.2016.01305
  • Smriti V, Srikanth CV. Understanding the complexities of Salmonella-host crosstalk as revealed by in vivo model organisms. IUBMB Life. 2015. DOI:https://doi.org/10.1002/iub.1393
  • Ji L, Ji-Tao G, Yong-Guo L, et al. The type VI secretion system gene cluster of Salmonella typhimurium: required for full virulence in mice. J Basic Microbiol. 2013. DOI:https://doi.org/10.1002/jobm.201200047
  • Pezoa D, Yang HJ, Blondel CJ, et al. The type VI secretion system encoded in SPI-6 plays a role in gastrointestinal colonization and systemic spread of Salmonella enterica serovar Typhimurium in the chicken. PLoS One. 2013;8:e63917.
  • Journet L, Cascales E. The type VI secretion system in Escherichia coli and related species. Ecosal Plus. 2016;7. DOI:https://doi.org/10.1128/ecosalplus.ESP-0009-2015
  • Osipiuk J, Xu X, Cui H, et al. Crystal structure of secretory protein Hcp3 from Pseudomonas aeruginosa. J Struct Funct Genomics. 2011;12:21–26.
  • Brunet YR, Henin J, Celia H, et al. Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep. 2014. DOI:https://doi.org/10.1002/embr.201337936
  • Silverman J, Agnello D, Zheng H, et al. Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol Cell. 2013;51:584–593.
  • Lin QP, Gao ZQ, Geng Z, et al. Crystal structure of the putative cytoplasmic protein STM0279 (Hcp2) from Salmonella typhimurium. Acta Crystallogr F Struct Biol Commun. 2017;73:463–468.
  • Stefan P, Ma AT, Revel AT, et al. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A. 2007. DOI:https://doi.org/10.1073/pnas.0706532104
  • Gallique M, Decoin V, Barbey C, et al. Contribution of the pseudomonas fluorescens MFE01 Type VI secretion system to biofilm formation. PLoS One. 2017;12:e0170770.
  • Andersson JA, Sha J, Erova TE, et al. Identification of new virulence factors and vaccine candidates for yersinia pestis. Front Cell Infect Microbiol. 2017;7:448.
  • Decoin V, Gallique M, Barbey C, et al. Pseudomonas fluorescens type 6 secretion system is related to mucoidy, motility and bacterial competition. BMC Microbiol. 2015;15. DOI:https://doi.org/10.1186/s12866-015-0405-9
  • Wang N, Liu J, Pang M, et al. Diverse roles of Hcp family proteins in the environmental fitness and pathogenicity of Aeromonas hydrophila Chinese epidemic strain NJ-35. Appl Microbiol Biotechnol. 2018. DOI:https://doi.org/10.1007/s00253-018-9116-0
  • Peng Y, Wang X, Shou J, et al. Roles of Hcp family proteins in the pathogenesis of the porcine extraintestinal pathogenic Escherichia coli type VI secretion system. Sci Rep. 2016. DOI:https://doi.org/10.1038/srep26816
  • Wang J, Zhihui Z, Fang H, et al. The role of the type VI secretion system vgrG gene in the virulence and antimicrobial resistance of Acinetobacter baumannii ATCC 19606. PLoS One. 2018. DOI:https://doi.org/10.1371/journal.pone.0192288
  • Tamang MD, Gurung M, Nam HM, et al. Antimicrobial susceptibility and virulence characteristics of Salmonella enterica Typhimurium isolates from healthy and diseased pigs in Korea. J Food Prot. 2014;77:1481–1486.
  • Schmitt CK, Ikeda JS, Darnell SC, et al. Absence of all components of the flagellar export and synthesis machinery differentially alters virulence of Salmonella enterica serovar Typhimurium in models of typhoid fever, survival in macrophages, tissue culture invasiveness, and calf enterocolitis. Infect Immun. 2001;69:5619–5625.
  • Guan J, Xiao X, Xu S, et al. Roles of RpoS in Yersinia pseudotuberculosis stress survival, motility, biofilm formation and type VI secretion system expression. J Microbiol. 2015;53:633–642.
  • Storey D, McNally A, Åstrand M, et al. Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent. PLoS Pathog. 2020;16:e1007969.
  • Weber B, Hasic M, Chen C, et al. Type VI secretion modulates quorum sensing and stress response in Vibrio anguillarum. Environ Microbiol. 2009;11:3018–3028.
  • Aubert DF, Flannagan RS, Valvano MA. A novel sensor kinase-response regulator hybrid controls biofilm formation and type VI secretion system activity in Burkholderia cenocepacia. Infect Immun. 2008;76:1979–1991.
  • Iyoda S, Kamidoi T, Hirose K, et al. A flagellar gene fliZ regulates the expression of invasion genes and virulence phenotype in Salmonella enterica serovar Typhimurium. Microb Pathog. 2001;30:81–90.
  • Fernanda DP, Gerson N, Alline P, et al. The type VI secretion system plays a role in type 1 fimbria expression and pathogenesis of an avian pathogenic Escherichia coli strain. Infect Immun. 2010. DOI:https://doi.org/10.1128/IAI.00531-10
  • Brunet YR, Khodr A, Logger L, et al. Silencing of the salmonella pathogenicity island 6-encoded type VI secretion system limits salmonella enterica serovar typhimurium interbacterial killing. Infect Immun. 2015;83:2738–2750.
  • Chakib M, Friederike H, Henry H, et al. Conflicting needs for a Salmonella hypervirulence gene in host and non-host environments. Mol Microbiol. 2010. DOI:https://doi.org/10.1046/j.1365-2958.2002.03070.x
  • Parsons DA, Heffron F. sciS, an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence. Infect Immun. 2005;73:4338–4345.
  • Ho TD, Slauch JM. Characterization of grvA, an antivirulence gene on the gifsy-2 phage in Salmonella enterica serovar typhimurium. J Bacteriol. 2001. DOI:https://doi.org/10.1128/JB.183.2.611-620.2001
  • Saliba A-E, Lei L, Westermann AJ, et al. Single-cell RNA-seq ties macrophage polarization to growth rate of intracellular Salmonella. Nat Microbiol. 2016. DOI:https://doi.org/10.1038/nmicrobiol.2016.206
  • Grant AJ, Morgan FJE, McKinley TJ, et al. Attenuated salmonella typhimurium lacking the pathogenicity island-2 type 3 secretion system grow to high bacterial numbers inside phagocytes in mice. PLoS Pathog. 2012;8(12):e1003070.
  • Petra F, Kowal AS, Pascale G, et al. Protocols for growth and development of Dictyostelium discoideum. Nat Protoc. 2007. DOI:https://doi.org/10.1038/nprot.2007.178
  • Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000;97:6640–6645.
  • Zhai YJ, Huang H, Liu J, et al. CpxR overexpression increases the susceptibility of acrB and cpxR double-deleted Salmonella enterica serovar Typhimurium to colistin. J Antimicrob Chemother. 2018;73:3016–3024.