27,520
Views
32
CrossRef citations to date
0
Altmetric
Signature Reviews

Pathogenesis and virulence of Candida albicans

& ORCID Icon
Pages 89-121 | Received 31 Aug 2021, Accepted 14 Dec 2021, Published online: 29 Dec 2021

References

  • Choi J, Kim S-H. A genome tree of life for the fungi kingdom. Proc Natl Acad Sci U S A. 2017 Aug 29; 114(35):9391–9396. 10.1073/pnas.1711939114
  • Hawksworth DL. The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res. 2001 Dec;105:1422–1432.
  • Lamoth F, Lockhart SR, Berkow EL, et al. Changes in the epidemiological landscape of invasive candidiasis. J Antimicrob Chemother. [2018 Jan 1];73(suppl_1):i4–i13.
  • Pappas PG, Lionakis MS, Arendrup MC, et al. Invasive candidiasis. Nat Rev Dis Primers. 2018 May 11;4:18026.
  • Huang X, Hurabielle C, Drummond RA, et al. Murine model of colonization with fungal pathogen Candida auris to explore skin tropism, host risk factors and therapeutic strategies. Cell Host Microbe. [2021 Feb 10];29(2):210–221 e6.
  • Silva S, Negri M, Henriques M, et al. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev. 2012 Mar;36(2):288–305.
  • Silva S, Negri M, Henriques M, et al. Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol. 2011 May;19(5):241–247.
  • Lionakis MS, Hohl TM. Call to action: how to tackle emerging nosocomial fungal infections comment. Cell Host Microbe. 2020 Jun 10;27(6):859–862.
  • Bougnoux ME, Diogo D, Francois N, et al. Multilocus sequence typing reveals intrafamilial transmission and microevolutions of Candida albicans isolates from the human digestive tract. J Clin Microbiol. 2006 May;44(5):1810–1820.
  • Beigi RH, Meyn LA, Moore DM, et al. Vaginal yeast colonization in nonpregnant women: a longitudinal study. Obstet Gynecol. 2004 Nov;104(5, Part 1):926–930. DOI:10.1097/01.AOG.0000140687.51048.73.
  • Opulente DA, Langdon QK, Buh KV, et al. Pathogenic budding yeasts isolated outside of clinical settings. FEMS Yeast Res. 2019 May 1;19(3). 10.1093/femsyr/foz032.
  • Chow BDW, Reardon JR, Perry EO, et al. Expressed breast milk as a predictor of neonatal yeast colonization in an intensive care setting. J Pediatr Infect Dis. 2014 Sep;3(3):213–220.
  • Ali GY, Algohary EHSS, Rashed KA, et al. Prevalence of Candida colonization in preterm newborns and VLBW in neonatal intensive care unit: role of maternal colonization as a risk factor in transmission of disease. J Matern-Fetal Neo M. 2012Jun; 251: 789–795
  • Mason KL, Downward JRE, Mason KD, et al. Candida albicans and bacterial microbiota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy. Infect Immun. 2012 Oct;80(10):3371–3380.
  • McDonough L, Mishra AA, Tosini N, et al. Candida albicans isolates 529L and CHN1 exhibit stable colonization of the murine gastrointestinal tract. bioRxiv.2021 June, 27;450080. https://pubmed.ncbi.nlm.nih.gov/34724818/.
  • Fan D, Coughlin LA, Neubauer MM, et al. Activation of HIF-1alpha and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat Med. 2015 Jul;21(7):808–814.
  • Ost KS, O’Meara TR, Stephens WZ, et al. Adaptive immunity induces mutualism between commensal eukaryotes. Nature. 2021 July 14; 596(7870):114–118.
  • Rao C, Coyte KZ, Bainter W, et al. Multi-kingdom ecological drivers of microbiota assembly in preterm infants. Nature. 2021 Feb 24;591(7851): 633–638 .
  • Kawakita M, Oyama T, Shirai I, et al. Cell wall N-glycan of Candida albicans ameliorates early hyper- and late hypo-immunoreactivity in sepsis. Commun Biol. [2021 March 16];4(1):342.
  • Doron I, Leonardi I, Li XV, et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell. [2021 Feb 18];184(4):1017–1031 e14.
  • Bacher P, Hohnstein T, Beerbaum E, et al. Human anti-fungal Th17 immunity and pathology rely on cross-reactivity against candida albicans. Cell. [2019 Mar 7];176(6):1340–1355 e15.
  • Shao TY, Ang WXG, Jiang TT, et al. Commensal Candida albicans positively calibrates systemic Th17 immunological responses. Cell Host Microbe. [2019 Mar 13];25(3):404–417 e6.
  • Tso GHW, Reales-calderon JA, Tan ASM, et al. Experimental evolution of a fungal pathogen into a gut symbiont. Science. [2018 Nov 2];362(6414):589-+.
  • Tan CT, Xu X, Qiao Y, et al. A peptidoglycan storm caused by beta-lactam antibiotic’s action on host microbiota drives Candida albicans infection. Nat Commun. [2021 May 7];12(1):2560.
  • Zhai B, Ola M, Rolling T, et al. High-resolution mycobiota analysis reveals dynamic intestinal translocation preceding invasive candidiasis. Nat Med. 2020 Jan;26(1):59-+.
  • McCarty TP, Pappas PG. Invasive Candidiasis. Infect Dis Clin North Am. 2016 Mar;30(1):103–124.
  • Noble SM, Gianetti BA, Witchley JN. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat Rev Microbiol. 2017 Feb;15(2):96–108.
  • Bohm L, Torsin S, Tint SH, et al. The yeast form of the fungus Candida albicans promotes persistence in the gut of gnotobiotic mice. PLoS Pathog. 2017 Oct;13(10):e1006699.
  • Pande K, Chen CB, Noble SM. Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism. Nat Genet. 2013 Sep;45(9):1088-+.
  • Desai JV. Candida albicans hyphae: from growth initiation to invasion. J Fungi (Basel). 2018 Jan 11;4(1):10.
  • Lu Y, Su C, Liu H. Candida albicans hyphal initiation and elongation. Trends Microbiol. 2014 Dec;22(12):707–714.
  • Vylkova S, Carman AJ, Danhof HA, et al. The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH. mBio. 2011;2(3):e00055–11.
  • Flanagan PR, Liu NN, Fitzpatrick DJ, et al. The Candida albicans TOR-activating GTPases Gtr1 and Rhb1 coregulate starvation responses and biofilm formation. mSphere. 2017 Nov-Dec;2(6):e00477–17.
  • Lindsay AK, Deveau A, Piispanen AE, et al. Farnesol and cyclic AMP signaling effects on the hypha-to-yeast transition in Candida albicans. Eukaryot Cell. 2012 Oct;11(10):1219–1225.
  • Witchley JN, Penumetcha P, Abon NV, et al. Candida albicans morphogenesis programs control the balance between gut commensalism and invasive infection. Cell Host Microbe. [2019 Mar 13];25(3):432–443 e6.
  • Lo HJ, Kohler JR, DiDomenico B, et al. Nonfilamentous C. albicans mutants are avirulent. Cell. [1997 Sep 5];90(5):939–949.
  • Murad AM, Leng P, Straffon M, et al. NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J. [2001 Sep 3];20(17):4742–4752.
  • Banerjee M, Lazzell AL, Romo JA, et al. Filamentation is associated with reduced pathogenicity of multiple non-albicans Candida species. mSphere. 2019 Oct 16;4:(5):e00656–19.
  • Dunker C, Polke M, Swidergall M, et al. Rapid proliferation due to better metabolic adaptation results in full virulence of a filament-deficient Candida albicans strain. Mycoses. 2020;63:31.
  • Lionakis MS, Lim JK, Lee CC, et al. Organ-specific innate immune responses in a mouse model of invasive candidiasis. J Innate Immun. 2011;3(2):180–199.
  • Liu Y, Filler SG. Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot Cell. 2011 Feb;10(2):168–173.
  • Nobile CJ, Nett JE, Andes DR, et al. Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot Cell. 2006 Oct;5(10):1604–1610.
  • Swidergall M, Filler SG. Oropharyngeal Candidiasis: fungal invasion and epithelial cell responses. PLoS Pathog. 2017 Jan;13(1):e1006056.
  • Filler SG, Swerdloff JN, Hobbs C, et al. Penetration and damage of endothelial-cells by Candida-albicans. Infect Immun. 1995 Mar;63(3):976–983.
  • Phan QT, Myers CL, Fu Y, et al. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 2007 Mar;5(3):543–557.
  • Liu YP, Shetty AC, Schwartz JA, et al. New signaling pathways govern the host response to C-albicans infection in various niches. Genome Res. 2015 May;25(5):679–689.
  • Zhu WD, Phan QT, Boontheung P, et al. EGFR and HER2 receptor kinase signaling mediate epithelial cell invasion by Candida albicans during oropharyngeal infection. Proc Natl Acad Sci U S A. [2012 Aug 28];109(35):14194–14199.
  • McCall AD, Pathirana RU, Prabhakar A, et al. Candida albicans biofilm development is governed by cooperative attachment and adhesion maintenance proteins. Npj Biofilms Microbi. 2019 Aug 23;5(1):21.
  • Wachtler B, Wilson D, Haedicke K, et al. From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS One. [2011 Feb 23];6(2):e17046.
  • Allert S, Forster TM, Svensson CM, et al. Candida albicans-induced epithelial damage mediates translocation through intestinal barriers. Mbio. 2018 May-Jun;9(3):e00915–18.
  • Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev. 2003 Sep;67(3):400–428. table of contents.
  • Albrecht A, Felk A, Pichova I, et al. Glycosylphosphatidylinositol- anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. J Biol Chem. [2006 Jan 13];281(2):688–694.
  • Schaller M, Korting HC, Schafer W, et al. Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Mol Microbiol. 1999 Oct;34(1):169–180.
  • Hube B, Sanglard D, Odds FC, et al. Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun. 1997 Sep;65(9):3529–3538.
  • Pericolini E, Gabrielli E, Amacker M, et al. Secretory aspartyl proteinases cause vaginitis and can mediate vaginitis caused by candida albicans in mice. Mbio. 2015 May-Jun;6(3):e00724.
  • Gabrielli E, Sabbatini S, Roselletti E, et al. In vivo induction of neutrophil chemotaxis by secretory aspartyl proteinases of Candida albicans. Virulence. [2016 Oct 2];7(7):819–825.
  • Leidich SD, Ibrahim AS, Fu Y, et al. Cloning and disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of Candida albicans. J Biol Chem. [1998 Oct 2];273(40):26078–26086.
  • Hube B, Stehr F, Bossenz M, et al. Secreted lipases of Candida albicans: cloning, characterisation and expression analysis of a new gene family with at least ten members. Arch Microbiol. 2000 Nov;174(5):362–374.
  • Gacser A, Stehr F, Kroger C, et al. Lipase 8 affects the pathogenesis of Candida albicans. Infect Immun. 2007 Oct;75(10):4710–4718.
  • Moyes DL, Wilson D, Richardson JP, et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature. [2016 Apr 7];532(7597):64-+.
  • Naglik JR, Gaffen SL, Hube B. Candidalysin: discovery and function in Candida albicans infections. Curr Opin Microbiol. 2019 Dec;52:100–109.
  • Blagojevic M, Camilli G, Maxson M, et al. Candidalysin triggers epithelial cellular stresses that induce necrotic death. Cell Microbiol. 2021 Jun 16;23(10): e13371.
  • Swidergall M, Solis NV, Millet N, et al. Activation of EphA2-EGFR signaling in oral epithelial cells by Candida albicans virulence factors. PLoS Pathog. 2021 Jan;17(1):e1009221.
  • Mogavero S, Sauer FM, Brunke S, et al. Candidalysin delivery to the invasion pocket is critical for host epithelial damage induced by Candida albicans. Cell Microbiol. 2021;23(10): e13378.
  • Austermeier S, Pekmezovic M, Porschitz P, et al. Albumin neutralizes hydrophobic toxins and modulates candida albicans pathogenicity. mBio. 2021 Jun 22;12(3): e0053121.
  • Man A, Ciurea CN, Pasaroiu D, et al. New perspectives on the nutritional factors influencing growth rate of Candida albicans in diabetics. an in vitro study. Mem Inst Oswaldo Cruz. 2017 Sep;112(9):587–592.
  • Williams RB, Lorenz MC. Multiple alternative carbon pathways combine to promote Candida albicans stress resistance, immune interactions, and virulence. mBio. 2020 Jan 14;11(1): e00357–17.
  • Vesely EM, Williams RB, Konopka JB, et al. N-acetylglucosamine metabolism promotes survival of Candida albicans in the phagosome. mSphere. 2017 Sep-Oct;2(5).
  • Alves R, Mota S, Silva S, et al. The carboxylic acid transporters Jen1 and Jen2 affect the architecture and fluconazole susceptibility of Candida albicans biofilm in the presence of lactate. Biofouling. 2017 Nov;33(10):943–954.
  • Crawford AC, Lehtovirta-Morley LE, Alamir O, et al. Biphasic zinc compartmentalisation in a human fungal pathogen. PLoS Pathog. 2018 May;14(5):e1007013.
  • Potrykus J, Stead D, MacCallum DM, et al. Fungal iron availability during deep seated candidiasis is defined by a complex interplay involving systemic and local events. PLoS Pathog. 2013 Oct;9(10):e1003676.
  • Citiulo F, Jacobsen ID, Miramon P, et al. Candida albicans scavenges host zinc via pra1 during endothelial invasion. PLoS Pathog. 2012;8(6):e1002777.
  • Luo S, Dasari P, Reiher N, et al. The secreted Candida albicans protein pra1 disrupts host defense by broadly targeting and blocking complement C3 and C3 activation fragments. Mol Immunol. 2018;93:266–277.
  • Malavia D, Lehtovirta-Morley LE, Alamir O, et al.Zinc limitation induces a hyper-adherent goliath phenotype in Candida albicans.Front Microbiol. 2017 Nov 14;8:2238.
  • Crawford A, Wilson D. Essential metals at the host-pathogen interface: nutritional immunity and micronutrient assimilation by human fungal pathogens. FEMS Yeast Res. 2015 Nov;15(7):fov071.
  • Mackie J, Szabo EK, Urgast DS, et al. Host-imposed copper poisoning impacts fungal micronutrient acquisition during systemic candida albicans infections. PLoS One. 2016;11(6):e0158683.
  • Weissman Z, Berdicevsky I, Cavari BZ, et al. The high copper tolerance of Candida albicans is mediated by a P-type ATPase. Proc Natl Acad Sci U S A. [2000 Mar 28];97(7):3520–3525.
  • Ramanan N, Wang Y. A high-affinity iron permease essential for Candida albicans virulence. Science. 2000 May 12;288(5468):1062–1064.
  • Almeida RS, Brunke S, Albrecht A, et al. the hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog. 2008 Nov;4(11):e1000217.
  • Frohner IE, Bourgeois C, Yatsyk K, et al. Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance. Mol Microbiol. 2009 Jan;71(1):240–252.
  • Hwang CS, Rhie GE, Oh JH, et al. Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiol-Sgm. 2002;148:3705–3713.
  • Loll-Krippleber R, d’Enfert C, Feri A, et al. A study of the DNA damage checkpoint in Candida albicans: uncoupling of the functions of Rad53 in DNA repair, cell cycle regulation and genotoxic stress-induced polarized growth. Mol Microbiol. 2014 Feb;91(3):452–471.
  • Smith DA, Nicholls S, Morgan BA, et al. A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol Biol Cell. 2004 Sep;15(9):4179–4190.
  • Danhof HA, Vylkova S, Vesely EM, et al. Robust extracellular pH modulation by candida albicans during growth in carboxylic acids. mBio. 2016 Nov 15;7(6):e01646–16.
  • Enjalbert B, Smith DA, Cornell MJ, et al. Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol Biol Cell. 2006 Feb;17(2):1018–1032.
  • Miramon P, Dunker C, Windecker H, et al. Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress. PLoS One. 2012;7(12):e52850.
  • Leach MD, Klipp E, Cowen LE, et al. Fungal Hsp90: a biological transistor that tunes cellular outputs to thermal inputs. Nat Rev Microbiol. 2012 Oct;10(10):693–704.
  • Gow NAR, Hube B. Importance of the Candida albicans cell wall during commensalism and infection. Curr Opin Microbiol. 2012 Aug;15(4):406–412.
  • Pradhan A, Ma Q, de Assis LJ, et al. Anticipatory stress responses and immune evasion in fungal pathogens. Trends Microbiol. 2021 May;29(5):416–427.
  • Ballou ER, Avelar GM, Childers DS, et al. Lactate signalling regulates fungal beta-glucan masking and immune evasion. Nat Microbiol. 2016 Dec 12;2:16238.
  • Pradhan A, Avelar GM, Bain JM, et al. Non-canonical signalling mediates changes in fungal cell wall PAMPs that drive immune evasion. Nat Commun. [2019 Nov 22];10(1):5315.
  • Lopes JP, Stylianou M, Backman E, et al. Evasion of immune surveillance in low oxygen environments enhances Candida albicans virulence. mBio. 2018 Nov 6;9:(6)
  • Pradhan A, Avelar GM, Bain JM, et al. Hypoxia promotes immune evasion by triggering beta-glucan masking on the Candida albicans cell surface via mitochondrial and cAMP-protein kinase A signaling. mBio. 2018 Nov 6;9(6):e02120–18.
  • Kumwenda P, Cottier F, Keevan B, et al. Oestrogen promotes innate immune evasion of Candida albicans through inactivation of the alternative complement system. bioRxiv. 2020 July 22;207191.
  • Childers DS, Avelar GM, Bain JM, et al. Epitope shaving promotes fungal immune evasion. mBio. 2020 Jul 7;11(4):e00984–20.
  • Cottier F, Sherrington S, Cockerill S, et al. Remasking of Candida albicans beta-glucan in response to environmental pH is regulated by quorum sensing. mBio. 2019 Oct 15;10(5):e02347–19.
  • Sherrington SL, Sorsby E, Mahtey N, et al. Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition. PLoS Pathog. 2017 May;13(5):e1006403.
  • Tripathi A, Liverani E, Tsygankov AY, et al. Iron alters the cell wall composition and intracellular lactate to affect Candida albicans susceptibility to antifungals and host immune response. J Biol Chem. [2020 Jul 17];295(29):10032–10044.
  • Wheeler RT, Kombe D, Agarwala SD, et al. Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment. PLoS Pathog. 2008 Dec;4(12):e1000227.
  • Wheeler RT, Fink GR, Cormack B. A drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog. 2006 Apr;2(4):e35.
  • Lorenz MC, Bender JA, Fink GR. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell. 2004 Oct;3(5):1076–1087.
  • Westman J, Moran G, Mogavero S, et al. Candida albicans hyphal expansion causes phagosomal membrane damage and luminal alkalinization. mBio. 2018 Sep 11;9(5). 10.1128/mBio.01226-18.
  • Vylkova S, Lorenz MC, Krysan DJ. Modulation of phagosomal pH by Candida albicans promotes hyphal morphogenesis and requires Stp2p, a regulator of amino acid transport. PLoS Pathog. 2014 Mar;10(3):e1003995.
  • Taylor PR, Tsoni SV, Willment JA, et al. Dectin-1 is required for β-glucan recognition and control of fungal infection. Nat Immunol. 2007 Jan;8(1):31–38. DOI:10.1038/ni1408.
  • Brown GD, Herre J, Williams DL, et al. Dectin-1 mediates the biological effects of β-Glucans. J Exp Med. 2003 May 5;197(9):1119–1124. 10.1084/jem.20021890.
  • Saijo S, Ikeda S, Yamabe K, et al. Dectin-2 recognition of α-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity. 2010 May 28;32(5):681–691. 10.1016/j.immuni.2010.05.001.
  • Zhu -L-L, Zhao X-Q, Jiang C, et al. C-type lectin receptors Dectin-3 and Dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity. 2013 Aug 22;39(2):324–334. 10.1016/j.immuni.2013.05.017.
  • Wells CA, Salvage-Jones JA, Li X, et al. The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albicans. J Immunol. 2008 Jun 1;180(11):7404–7413. 10.4049/jimmunol.180.11.7404.
  • Lionakis MS, Levitz SM. Host control of fungal infections: lessons from basic studies and human cohorts. Annu Rev Immunol. 2018 Apr 26;36(1):157–191. 10.1146/annurev-immunol-042617-053318.
  • Hardison SE, Brown GD. C-type lectin receptors orchestrate antifungal immunity. Nat Immunol. 2012 Sep;13(9):817–822.
  • Negoro PE, Xu SY, Dagher Z, et al. Spleen tyrosine kinase is a critical regulator of neutrophil responses to Candida species. Mbio. 2020 May-Jun;11(3). doi:10.1128/mBio.02043-19.
  • Whitney PG, Bar E, Osorio F, et al. Syk signaling in dendritic cells orchestrates innate resistance to systemic fungal infection. PLoS Pathog. 2014 Jul;10(7):e1004276. doi:10.1371/journal.ppat.1004276.
  • Wang L, Aschenbrenner D, Zeng Z, et al. Gain-of-function variants in SYK cause immune dysregulation and systemic inflammation in humans and mice. Nat Genet. 2021 Apr;53(4):500–510.
  • Chamilos G, Lionakis MS, Kontoyiannis DP. Call for action: invasive fungal infections associated with ibrutinib and other small molecule kinase inhibitors targeting immune signaling pathways. Clin Infect Dis. 2018 Jan 6;66(1):140–148.
  • Glocker EO, Hennigs A, Nabavi M, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. [2009 Oct 29];361(18):1727–1735.
  • Rieber N, Gazendam RP, Freeman AF, et al. Extrapulmonary aspergillus infection in patients with CARD9 deficiency. JCI Insight. [2016 Oct 20];1(17):e89890.
  • Wang X, Zhang R, Wu W, et al. Impaired specific antifungal immunity in CARD9-deficient patients with phaeohyphomycosis. J Invest Dermatol. 2018 Mar;138(3):607–617.
  • Lanternier F, Pathan S, Vincent QB, et al. Deep dermatophytosis and inherited CARD9 deficiency. N Engl J Med. [2013 Oct 31];369(18):1704–1714.
  • Lanternier F, Mahdaviani SA, Barbati E, et al. Inherited CARD9 deficiency in otherwise healthy children and adults with Candida species-induced meningoencephalitis, colitis, or both. J Allergy Clin Immunol. 2015 Jun;135(6):1558–68 e2.
  • LeibundGut-Landmann S, Gross O, Robinson MJ, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol. 2007 Jun;8(6):630–638.
  • Drummond RA, Swamydas M, Oikonomou V, et al. CARD9(+) microglia promote antifungal immunity via IL-1beta- and CXCL1-mediated neutrophil recruitment. Nat Immunol. 2019 May;20(5):559–570.
  • Drewniak A, Gazendam RP, Tool ATJ, et al. Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood. [2013 Mar 28];121(13):2385–2392.
  • Drummond RA, Franco LM, Lionakis MS. Human CARD9: a critical molecule of fungal immune surveillance. Front Immunol. 2018;9:1836.
  • Friedberg JW, Sharman J, Sweetenham J, et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood. [2010 Apr 1];115(13):2578–2585.
  • Zarakas MA, Desai JV, Chamilos G, et al. Fungal infections with ibrutinib and other small-molecule kinase inhibitors. Curr Fungal Infect Rep. 2019 Sep;13(3):86–98.
  • Ferwerda B, Ferwerda G, Plantinga TS, et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med. [2009 Oct 29];361(18):1760–1767.
  • Griffiths JS, White PL, Czubala MA, et al. A human Dectin-2 deficiency associated with invasive aspergillosis. J Infect Dis. 2021 Mar 18; 224(7):1219–1224.
  • Vendele I, Willment JA, Silva LM, et al. Mannan detecting C-type lectin receptor probes recognise immune epitopes with diverse chemical, spatial and phylogenetic heterogeneity in fungal cell walls. PLoS Pathog. 2020 Jan;16(1):e1007927.
  • Gantner BN, Simmons RM, Canavera SJ, et al. Collaborative induction of inflammatory responses by dectin-1 and toll-like receptor 2. J Exp Med. [2003 May 5];197(9):1107–1117.
  • Netea MG, Gow NA, Munro CA, et al. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and toll-like receptors. J Clin Invest. 2006 Jun;116(6):1642–1650.
  • Haley K, Igyarto BZ, Ortner D, et al. Langerhans cells require MyD88-dependent signals for candida albicans response but not for contact hypersensitivity or migration. J Immunol. [2012 May 1];188(9):4334–4339.
  • Bellocchio S, Montagnoli C, Bozza S, et al. The contribution of the toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol. [2004 Mar 1];172(5):3059–3069.
  • Picard C, Casanova JL, Puel A. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IkappaBalpha deficiency. Clin Microbiol Rev. 2011 Jul;24(3):490–497.
  • Tessarolli V, Gasparoto TH, Lima HR, et al. Absence of TLR2 influences survival of neutrophils after infection with Candida albicans. Med Mycol. 2010 Feb;48(1):129–140.
  • Villamon E, Gozalbo D, Roig P, et al. Toll-like receptor-2 is essential in murine defenses against Candida albicans infections. Microbes Infect. 2004 Jan;6(1):1–7.
  • Netea MG, Sutmuller R, Hermann C, et al. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol. [2004 Mar 15];172(6):3712–3718.
  • Gasparoto TH, Tessarolli V, Garlet TP, et al. Absence of functional TLR4 impairs response of macrophages after Candida albicans infection. Med Mycol. 2010 Dec;48(8):1009–1017.
  • Weindl G, Naglik JR, Kaesler S, et al. Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. J Clin Investig. 2007 Dec;117(12):3664–3672.
  • Marakalala MJ, Vautier S, Potrykus J, et al. Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1. PLoS Pathog. 2013;9(4):e1003315.
  • Murciano C, Villamon E, Gozalbo D, et al. Toll-like receptor 4 defective mice carrying point or null mutations do not show increased susceptibility to Candida albicans in a model of hematogenously disseminated infection. Med Mycol. 2006 Mar;44(2):149–157.
  • Netea MG, Gow NA, Joosten LA, et al. Variable recognition of Candida albicans strains by TLR4 and lectin recognition receptors. Med Mycol. 2010 Nov;48(7):897–903.
  • Choteau L, Vancraeyneste H, Le Roy D, et al. Role of TLR1, TLR2 and TLR6 in the modulation of intestinal inflammation and Candida albicans elimination. Gut Pathog. 2017;9:9.
  • der Graaf Ca V, Netea MG, Morre SA, et al. Toll-like receptor 4 Asp299Gly/Thr399Ile polymorphisms are a risk factor for Candida bloodstream infection. Eur Cytokine Netw. 2006 Mar;17(1):29–34.
  • Lionakis MS. Genetic susceptibility to fungal infections in humans. Curr Fungal Infect Rep. 2012 Mar 1;6(1):11–22.
  • Plantinga TS, Johnson MD, Scott WK, et al. Toll-like receptor 1 polymorphisms increase susceptibility to candidemia. J Infect Dis. [2012 Mar 15];205(6):934–943.
  • Miyazato A, Nakamura K, Yamamoto N, et al. Toll-like receptor 9-dependent activation of myeloid dendritic cells by deoxynucleic acids from Candida albicans. Infect Immun. 2009 Jul;77(7):3056–3064.
  • Wagener J, Malireddi RKS, Lenardon MD, et al. Fungal chitin dampens inflammation through IL-10 induction mediated by NOD2 and TLR9 activation. PLoS Pathog. 2014 Apr;10(4):e1004050.
  • Biondo C, Signorino G, Costa A, et al. Recognition of yeast nucleic acids triggers a host-protective type I interferon response. Eur J Immunol. 2011 Jul;41(7):1969–1979.
  • Bourgeois C, Majer O, Frohner IE, et al. Conventional dendritic cells mount a type I IFN response against Candida spp. requiring novel phagosomal TLR7-mediated IFN-beta signaling. J Immunol. [2011 Mar 1];186(5):3104–3112.
  • Biondo C, Malara A, Costa A, et al. Recognition of fungal RNA by TLR7 has a nonredundant role in host defense against experimental candidiasis. Eur J Immunol. 2012 Oct;42(10):2632–2643.
  • Gringhuis SI, Kaptein TM, Wevers BA, et al. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1beta via a noncanonical caspase-8 inflammasome. Nat Immunol. [2012 Jan 22];13(3):246–254.
  • Joly S, Sutterwala FS. Cutting edge: candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. Virulence. 2010 Jul-Aug;1(4):276–280.
  • Hise AG, Tomalka J, Ganesan S, et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe. [2009 May 8];5(5):487–497.
  • Gross O, Poeck H, Bscheider M, et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature. [2009 May 21];459(7245):433–436.
  • Joly S, Eisenbarth SC, Olivier AK, et al. Cutting edge: nlrp10 is essential for protective antifungal adaptive immunity against Candida albicans. J Immunol. [2012 Nov 15];189(10):4713–4717.
  • Tomalka J, Ganesan S, Azodi E, et al. A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans. PLoS Pathog. 2011 Dec;7(12):e1002379.
  • Lamborn IT, Jing H, Zhang Y, et al. Recurrent rhinovirus infections in a child with inherited MDA5 deficiency. J Exp Med. [2017 Jul 3];214(7):1949–1972.
  • Jaeger M, van der Lee R, Cheng SC, et al. The RIG-I-like helicase receptor MDA5 (IFIH1) is involved in the host defense against Candida infections. Eur J Clin Microbiol. 2015 May;34(5):963–974.
  • Swidergall M, Solis NV, Lionakis MS, et al. EphA2 is an epithelial cell pattern recognition receptor for fungal beta-glucans. Nat Microbiol. 2018 Jan;3(1):53–61.
  • Swidergall M, Solis NV, Wang Z, et al. EphA2 is a neutrophil receptor for Candida albicans that stimulates antifungal activity during oropharyngeal infection. Cell Rep. [2019 Jul 9];28(2):423–433 e5.
  • Lionakis MS, Kontoyiannis DP. Glucocorticoids and invasive fungal infections. Lancet. 2003 Nov 29;362(9398):1828–1838.
  • Smith JA, Kauffman CA. Endemic fungal infections in patients receiving tumour necrosis factor-alpha inhibitor therapy. Drugs. 2009 Jul 30;69(11):1403–1415.
  • Saunte DM, Mrowietz U, Puig L, et al. Candida infections in patients with psoriasis and psoriatic arthritis treated with interleukin-17 inhibitors and their practical management. Brit J Dermatol. 2017 Jul;177(1):47–62.
  • Ok SM, Ho D, Lynd T, et al. Candida infection associated with salivary gland-A narrative review. J Clin Med. 2020 Dec 30;10:(1): 97.
  • Conti HR, Bruno VM, Childs EE, et al. IL-17 receptor signaling in oral epithelial cells is critical for protection against oropharyngeal Candidiasis. Cell Host Microbe. [2016 Nov 09];20(5):606–617.
  • Ho AW, Shen F, Conti HR, et al. IL-17RC is required for immune signaling via an extended SEF/IL-17R signaling domain in the cytoplasmic tail. J Immunol. [2010 Jul 15];185(2):1063–1070.
  • Ferreira MC, Whibley N, Mamo AJ, et al. Interleukin-17-induced protein lipocalin 2 is dispensable for immunity to oral Candidiasis. Infect Immun. 2014 Mar;82(3):1030–1035.
  • Conti HR, Shen F, Nayyar N, et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med. [2009 Feb 16];206(2):299–311.
  • Ling Y, Cypowyj S, Aytekin C, et al. Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. J Exp Med. [2015 May 04];212(5):619–631.
  • Boisson B, Wang C, Pedergnana V, et al. An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity. [2013 Oct 17];39(4):676–686.
  • Levy R, Okada S, Beziat V, et al. Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc Natl Acad Sci U S A. [2016 Dec 20];113(51):E8277–E8285.
  • Puel A, Cypowyj S, Bustamante J, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science. [2011 Apr 01];332(6025):65–68.
  • Ochoa S, Constantine GM, Lionakis MS. Genetic susceptibility to fungal infection in children. Curr Opin Pediatr. 2020 Dec;32(6):780–789.
  • Liu L, Okada S, Kong XF, et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. [2011 Aug 1];208(8):1635–1648.
  • Milner JD, Brenchley JM, Laurence A, et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature. [2008 Apr 10];452(7188):773–776.
  • Okada S, Markle JG, Deenick EK, et al. IMMUNODEFICIENCIES. impairment of immunity to candida and mycobacterium in humans with bi-allelic RORC mutations. Science. [2015 Aug 7];349(6248):606–613.
  • Puel A, Cypowyj S, Marodi L, et al. Inborn errors of human IL-17 immunity underlie chronic mucocutaneous candidiasis. Curr Opin Allergy Clin Immunol. 2012 Dec;12(6):616–622.
  • Li J, Ritelli M, Ma CS, et al. Chronic mucocutaneous candidiasis and connective tissue disorder in humans with impaired JNK1-dependent responses to IL-17A/F and TGF-beta. Sci Immunol. 2019 Nov 29;4:(41): eaax7965.
  • Krueger JG, Fretzin S, Suarez-Farinas M, et al IL-17A is essential for cell activation and inflammatory gene circuits in subjects with psoriasis. J Allergy Clin Immun. 2012 Jul;130(1):145-+.
  • Krueger JG, Wharton KA Jr., Schlitt T, et al. IL-17A inhibition by secukinumab induces early clinical, histopathologic, and molecular resolution of psoriasis. J Allergy Clin Immunol. 2019 Sep;144(3):750–763.
  • Gladiator A, Wangler N, Trautwein-Weidner K, et al. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J Immunol. [2013 Jan 15];190(2):521–525.
  • Conti HR, Peterson AC, Brane L, et al. Oral-resident natural Th17 cells and gammadelta T cells control opportunistic Candida albicans infections. J Exp Med. [2014 Sep 22];211(10):2075–2084.
  • Verma AH, Richardson JP, Zhou C, et al. Oral epithelial cells orchestrate innate type 17 responses to Candida albicans through the virulence factor candidalysin. Sci Immunol. 2017 Nov 3;2(17): eaam8834 .
  • Sparber F, Dolowschiak T, Mertens S, et al. Langerin+ DCs regulate innate IL-17 production in the oral mucosa during Candida albicans-mediated infection. PLoS Pathog. 2018 May;14(5):e1007069.
  • Trautwein-Weidner K, Gladiator A, Kirchner FR, et al. Antigen-specific Th17 cells are primed by distinct and complementary dendritic cell subsets in oropharyngeal Candidiasis. PLoS Pathog. 2015 Oct;11(10):e1005164.
  • Acosta-Rodriguez EV, Rivino L, Geginat J, et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol. 2007 Jun;8(6):639–646.
  • Kirchner FR, LeibundGut-Landmann S. Tissue-resident memory Th17 cells maintain stable fungal commensalism in the oral mucosa. Mucosal Immunol. 2021 Mar;14(2):455–467.
  • Oikonomou V, Break TJ, Gaffen SL, et al. Infections in the monogenic autoimmune syndrome APECED. Curr Opin Immunol. 2021 Aug 18;72:286–297.
  • Fernandes RA, Perez-Andres M, Blanco E, et al. Complete multilineage CD4 expression defect associated with warts due to an inherited homozygous CD4 gene mutation. Front Immunol. 2019;10:2502.
  • Zonios D, Sheikh V, Sereti I. Idiopathic CD4 lymphocytopenia: a case of missing, wandering or ineffective T cells. Arthritis Res Ther. 2012 Aug 31;14(4):222.
  • Lisco A, Ye PY, Wong CS, et al. Lost in translation: lack of CD4 expression due to a novel genetic defect. J Infect Dis. [2021 Feb 15];223(4):645–654.
  • Harris LD, Klatt NR, Vinton C, et al. Mechanisms underlying gammadelta T-cell subset perturbations in SIV-infected Asian rhesus macaques. Blood. [2010 Nov 18];116(20):4148–4157.
  • Klatt NR, Estes JD, Sun X, et al. Loss of mucosal CD103+ DCs and IL-17+ and IL-22+ lymphocytes is associated with mucosal damage in SIV infection. Mucosal Immunol. 2012 Nov;5(6):646–657.
  • Mudd JC, Busman-Sahay K, DiNapoli SR, et al. Hallmarks of primate lentiviral immunodeficiency infection recapitulate loss of innate lymphoid cells. Nat Commun. [2018 Sep 27];9(1):3967.
  • Trautwein-Weidner K, Gladiator A, Nur S, et al. IL-17-mediated antifungal defense in the oral mucosa is independent of neutrophils. Mucosal Immunol. 2015 Mar;8(2):221–231.
  • Edgerton M, Koshlukova SE, Lo TE, et al. Candidacidal activity of salivary histatins. Identification of a histatin 5-binding protein on Candida albicans. J Biol Chem. [1998 Aug 7];273(32):20438–20447.
  • Moffa EB, Mussi MC, Xiao Y, et al. Histatin 5 inhibits adhesion of C. albicans to reconstructed human oral epithelium. Front Microbiol. 2015;6:885.
  • Kong EF, Tsui C, Boyce H, et al. Development and in vivo evaluation of a novel histatin-5 bioadhesive hydrogel formulation against oral Candidiasis. Antimicrob Agents Chemother. 2016 Feb;60(2):881–889.
  • Aggor FEY, Break TJ, Trevejo-Nunez G, et al. Oral epithelial IL-22/STAT3 signaling licenses IL-17-mediated immunity to oral mucosal candidiasis. Sci Immunol. 2020 Jun 5;5:(48):eaba0570.
  • Huppler AR, Conti HR, Hernandez-Santos N, et al. Role of neutrophils in IL-17-dependent immunity to mucosal candidiasis. J Immunol. [2014 Feb 15];192(4):1745–1752.
  • Altmeier S, Toska A, Sparber F, et al. IL-1 coordinates the neutrophil response to C. albicans in the oral mucosa. PLoS Pathog. 2016 Sep;12(9):e1005882.
  • Bichele R, Karner J, Truusalu K, et al. IL-22 neutralizing autoantibodies impair fungal clearance in murine oropharyngeal candidiasis model. Eur J Immunol. 2018 Mar;48(3):464–470.
  • Glocker EO, Kotlarz D, Boztug K, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. [2009 Nov 19];361(21):2033–2045.
  • Forbester JL, Lees EA, Goulding D, et al. Interleukin-22 promotes phagolysosomal fusion to induce protection against salmonella enterica typhimurium in human epithelial cells. Proc Natl Acad Sci U S A. [2018 Oct 2];115(40):10118–10123.
  • de Groot Pw, Bader O, de Boer Ad, et al. Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryot Cell. 2013 Apr;12(4):470–481.
  • Moyes DL, Runglall M, Murciano C, et al. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe. [2010 Sep 16];8(3):225–235.
  • Verma AH, Zafar H, Ponde NO, et al. IL-36 and IL-1/IL-17 drive immunity to oral candidiasis via parallel mechanisms. J Immunol. [2018 Jul 15];201(2):627–634.
  • Ho J, Yang X, Nikou SA, et al. Candidalysin activates innate epithelial immune responses via epidermal growth factor receptor. Nat Commun. [2019 May 24];10(1):2297.
  • Hanaoka M, Domae E. IL-1 alpha released from oral epithelial cells upon candidalysin exposure initiates an early innate epithelial response. Int Immunol. 2021 Mar;33(3):161–170.
  • Constantine GM, Lionakis MS. Lessons from primary immunodeficiencies: autoimmune regulator and autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Immunol Rev. 2019 Jan;287(1):103–120.
  • Ferre EM, Rose SR, Rosenzweig SD, et al. Redefined clinical features and diagnostic criteria in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. JCI Insight. 2016 Aug 18;1(13): e88782.
  • Puel A, Doffinger R, Natividad A, et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med. [2010 Feb 15];207(2):291–297.
  • Kisand K, Boe Wolff AS, Podkrajsek KT, et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med. [2010 Feb 15];207(2):299–308.
  • Orlova EM, Sozaeva LS, Kareva MA, et al. Expanding the phenotypic and genotypic landscape of autoimmune polyendocrine syndrome type 1. J Clin Endocrinol Metab. [2017 Sep 1];102(9):3546–3556.
  • Break TJ, Oikonomou V, Dutzan N, et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science. 2021 Jan 15;371(6526):eaay5731.
  • Toubiana J, Okada S, Hiller J, et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood. [2016 Jun 23];127(25):3154–3164.
  • Higgins E, Al Shehri T, McAleer MA, et al. Use of ruxolitinib to successfully treat chronic mucocutaneous candidiasis caused by gain-of-function signal transducer and activator of transcription 1 (STAT1) mutation. J Allergy Clin Immun. 2015 Feb;135(2):551–U356.
  • Kong XF, Worley L, Rinchai D, et al. Three copies of four interferon receptor genes underlie a mild type i interferonopathy in down syndrome. J Clin Immunol. 2020 Aug;40(6):807–819.
  • Zhu F, Willette-Brown J, Song NY, et al. Autoreactive T cells and chronic fungal infection drive esophageal carcinogenesis. Cell Host Microbe. [2017 Apr 12];21(4):478–493 e7.
  • Bruserud O, Costea DE, Laakso S, et al. Oral tongue malignancies in autoimmune polyendocrine syndrome type 1. Front Endocrinol (Lausanne). 2018;9:463.
  • Sampaio EP, Ding L, Rose SR, et al. Novel signal transducer and activator of transcription 1 mutation disrupts small ubiquitin-related modifier conjugation causing gain of function. J Allergy Clin Immunol. 2018 May;141(5):1844–1853 e2.
  • Denning DW, Kneale M, Sobel JD, et al. Global burden of recurrent vulvovaginal candidiasis: a systematic review. Lancet Infect Dis. 2018 Nov;18(11):e339–e347.
  • Yano J, Sobel JD, Nyirjesy P, et al. Current patient perspectives of vulvovaginal candidiasis: incidence, symptoms, management and post-treatment outcomes. BMC Womens Health. [2019 Mar 29];19(1):48.
  • Bradford LL, Ravel J. The vaginal mycobiome: a contemporary perspective on fungi in women’s health and diseases. Virulence. 2017 Apr 3;8(3):342–351.
  • Xu J, Schwartz K, Bartoces M, et al. Effect of antibiotics on vulvovaginal candidiasis: a metroNet study. J Am Board Fam Med. 2008 Jul-Aug;21(4):261–268.
  • Xu J, Sobel JD. Antibiotic-associated vulvovaginal Candidiasis. Curr Infect Dis Rep. 2003 Dec;5(6):481–487.
  • White MH. Is vulvovaginal candidiasis an AIDS-related illness?. Clin Infect Dis. 1996 May;22 Suppl 2:S124–7.
  • Fidel PL, Lynch ME, Sobel JD. Circulating Cd4 and Cd8 T-cells have little impact on host-defense against experimental vaginal Candidiasis. Infect Immun. 1995 Jul;63(7):2403–2408.
  • Sobel JD. Vulvovaginal candidiasis: a comparison of HIV-positive and -negative women. Int J STD AIDS. 2002 Jun;13(6):358–362.
  • Peters BM, Coleman BM, Willems HME, et al. The Interleukin (IL) 17R/IL-22R signaling axis is dispensable for vulvovaginal Candidiasis regardless of estrogen status. J Infect Dis. [2020 Apr 7];221(9):1554–1563.
  • Ardizzoni A, Wheeler RT, Pericolini E. It takes two to tango: how a dysregulation of the innate immunity, coupled with candida virulence, triggers VVC onset. Front Microbiol. 2021 Jun 7;12: 692491.
  • Pekmezovic M, Hovhannisyan H, Gresnigt MS, et al. Candida pathogens induce protective mitochondria-associated type I interferon signalling and a damage-driven response in vaginal epithelial cells. Nat Microbiol. 2021 May;6(5):643–657.
  • Moyes DL, Murciano C, Runglall M, et al. Candida albicans yeast and hyphae are discriminated by MAPK signaling in vaginal epithelial cells. PLoS One. 2011;6(11):e26580.
  • Fidel PL Jr., Barousse M, Espinosa T, et al. An intravaginal live Candida challenge in humans leads to new hypotheses for the immunopathogenesis of vulvovaginal candidiasis. Infect Immun. 2004 May;72(5):2939–2946.
  • Black CA, Eyers FM, Russell A, et al. Acute neutropenia decreases inflammation associated with murine vaginal candidiasis but has no effect on the course of infection. Infect Immun. 1998 Mar;66(3):1273–1275.
  • Richardson JP, Willems HME, Moyes DL, et al. Candidalysin drives epithelial signaling, neutrophil recruitment, and immunopathology at the vaginal mucosa. Infect Immun. 2018 Feb;86(2): e00645–17.
  • Pericolini E, Gabrielli E, Amacker M, et al. Secretory aspartyl proteinases cause vaginitis and can mediate vaginitis caused by Candida albicans in mice. mBio. [2015 Jun 2];6(3):e00724.
  • Bruno VM, Shetty AC, Yano J, et al. Transcriptomic analysis of vulvovaginal candidiasis identifies a role for the NLRP3 inflammasome. mBio. 2015 Apr 21;6(2):e00182–15.
  • Schaller M, Bein M, Korting HC, et al. The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect Immun. 2003 Jun;71(6):3227–3234.
  • Richardson JP, Willems HME, Moyes DL, et al. Candidalysin drives epithelial signaling, neutrophil recruitment, and immunopathology at the vaginal mucosa. Infect Immun. 2018 Feb;86(2):e00645–17.
  • Lasarte S, Samaniego R, Salinas-Munoz L, et al. Sex hormones coordinate neutrophil immunity in the vagina by controlling chemokine gradients. J Infect Dis. [2016 Feb 1];213(3):476–484.
  • Salinas-Munoz L, Campos-Fernandez R, Mercader E, et al. Estrogen Receptor-Alpha (ESR1) governs the lower female reproductive tract vulnerability to Candida albicans. Front Immunol. 2018;9:1033.
  • Yano J, Noverr MC, Fidel PL Jr. Vaginal heparan sulfate linked to neutrophil dysfunction in the acute inflammatory response associated with experimental vulvovaginal Candidiasis. mBio. 2017 Mar 14;8(2): e00211–17.
  • Yano J, Peters BM, Noverr MC, et al. Novel mechanism behind the immunopathogenesis of vulvovaginal Candidiasis: “neutrophil anergy”. Infect Immun. 2018 Mar;86(3).
  • Lowes DJ, Hevener KE, Peters BM. Second-generation antidiabetic sulfonylureas inhibit Candida albicans and candidalysin-mediated activation of the NLRP3 inflammasome. Antimicrob Agents Chemother. 2020 ;64(2):e01777-19.
  • Roselletti E, Perito S, Gabrielli E, et al. NLRP3 inflammasome is a key player in human vulvovaginal disease caused by Candida albicans. Sci Rep. [2017 Dec 19];7(1):17877.
  • Willems HME, Lowes DJ, Barker KS, et al. Comparative analysis of the capacity of the Candida species to elicit vaginal immunopathology. Infect Immun. 2018 Dec;86(12):e00527–18.
  • Roselletti E, Perito S, Gabrielli E, et al.NLRP3 inflammasome is a key player in human vulvovaginal disease caused by &ITCandida albicans&IT.Sci Rep-Uk. 2017 Dec 19;7(1): 17877.
  • Jaeger M, Carvalho A, Cunha C, et al. Association of a variable number tandem repeat in the NLRP3 gene in women with susceptibility to RVVC. Eur J Clin Microbiol Infect Dis. 2016 May;35(5):797–801.
  • Jaeger M, Pinelli M, Borghi M, et al. A systems genomics approach identifies SIGLEC15 as a susceptibility factor in recurrent vulvovaginal candidiasis. Sci Transl Med. 2019 Jun 12;11(496): eaar3558.
  • Rosentul DC, Delsing CE, Jaeger M, et al. Gene polymorphisms in pattern recognition receptors and susceptibility to idiopathic recurrent vulvovaginal candidiasis. Front Microbiol. 2014;5:483.
  • Babula O, Lazdane G, Kroica J, et al. Frequency of interleukin-4 (IL-4) −589 gene polymorphism and vaginal concentrations of IL-4, nitric oxide, and mannose-binding lectin in women with recurrent vulvovaginal candidiasis. Clin Infect Dis. [2005 May 1];40(9):1258–1262.
  • De Luca A, Carvalho A, Cunha C, et al. IL-22 and IDO1 affect immunity and tolerance to murine and human vaginal candidiasis. PLoS Pathog. 2013;9(7):e1003486.
  • Borghi M, De Luca A, Puccetti M, et al. Pathogenic NLRP3 inflammasome activity during Candida infection is negatively regulated by IL-22 via activation of NLRC4 and IL-1Ra. Cell Host Microbe. [2015 Aug 12];18(2):198–209.
  • Zelante T, Iannitti RG, Cunha C, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. [2013 Aug 22];39(2):372–385.
  • Borghi M, Pariano M, Solito V, et al. Targeting the aryl hydrocarbon receptor with Indole-3-aldehyde protects from vulvovaginal candidiasis via the IL-22-IL-18 cross-talk. Front Immunol. 2019;10:2364.
  • Tso GHW, Reales-Calderon JA, Pavelka N. The elusive anti-Candida vaccine: lessons from the past and opportunities for the future. Front Immunol. 2018;9:897.
  • Sandini S, La Valle R, Deaglio S, et al. A highly immunogenic recombinant and truncated protein of the secreted aspartic proteases family (rSap2t) of Candida albicans as a mucosal anticandidal vaccine. FEMS Immunol Med Microbiol. 2011 Jul;62(2):215–224.
  • Torosantucci A, Bromuro C, Chiani P, et al. A novel glyco-conjugate vaccine against fungal pathogens. J Exp Med. [2005 Sep 5];202(5):597–606.
  • Ibrahim AS, Luo GPS, Gebremariam T, et al. NDV-3 protects mice from vulvovaginal candidiasis through T- and B-cell immune response. Vaccine. [2013 Nov 12];31(47):5549–5556.
  • Schmidt CS, White CJ, Ibrahim AS, et al. NDV-3, a recombinant alum-adjuvanted vaccine for Candida and staphylococcus aureus, is safe and immunogenic in healthy adults. Vaccine. [2012 Dec 14];30(52):7594–7600.
  • Edwards JE Jr., Schwartz MM, Schmidt CS, et al. A fungal immunotherapeutic vaccine (NDV-3A) for treatment of recurrent vulvovaginal candidiasis-A phase 2 randomized, double-blind, placebo-controlled trial. Clin Infect Dis. [2018 Jun 1];66(12):1928–1936.
  • Uppuluri P, Singh S, Alqarihi A, et al. Human anti-Als3p antibodies are surrogate markers of NDV-3A vaccine efficacy against recurrent vulvovaginal Candidiasis. Front Immunol. 2018;9:1349.
  • Findley K, Oh J, Yang J, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. [2013 Jun 20];498(7454):367–370.
  • Oh J, Freeman AF, Program NCS, et al. The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome Res. 2013 Dec;23(12):2103–2114.
  • Timsit JF, Azoulay E, Schwebel C, et al. Empirical micafungin treatment and survival without invasive fungal infection in adults with ICU-acquired sepsis, Candida colonization, and multiple organ failure the empiricus randomized clinical trial. Jama-J Am Med Assoc. [2016 Oct 18];316(15):1555–1564.
  • Proctor DM, Dangana T, Sexton DJ, et al. Integrated genomic, epidemiologic investigation of Candida auris skin colonization in a skilled nursing facility. Nat Med. 2021;27(8):1401-1409.
  • Horton MV, Johnson CJ, Kernien JF, et al. Candida auris forms high-burden biofilms in skin niche conditions and on porcine skin. mSphere. 2020 Jan 22;5(1): e00910–19.
  • Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses. 2008 Sep;51(Suppl 4):2–15.
  • Lisboa C, Santos A, Dias C, et al. Candida balanitis: risk factors. J Eur Acad Dermatol Venereol. 2010 Jul;24(7):820–826.
  • Jennemann R, Rabionet M, Gorgas K, et al. Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum Mol Genet. [2012 Feb 1];21(3):586–608.
  • Lopez CM, Wallich R, Riesbeck K, et al. Candida albicans uses the surface protein Gpm1 to attach to human endothelial cells and to keratinocytes via the adhesive protein vitronectin. PLoS One. 2014;9(3):e90796.
  • Tapia CV, Falconer M, Tempio F, et al. Melanocytes and melanin represent a first line of innate immunity against Candida albicans. Med Mycol. 2014 Jul;52(5):445–454.
  • Mackintosh JA. The antimicrobial properties of melanocytes, melanosomes and melanin and the evolution of black skin. J Theor Biol. 2001 Jul 21;211(2):101–113.
  • Riol-Blanco L, Ordovas-Montanes J, Perro M, et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature. [2014 Jun 5];510(7503):157–161.
  • Kashem SW, Riedl MS, Yao C, et al. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity. [2015 Sep 15];43(3):515–526.
  • Cohen JA, Edwards TN, Liu AW, et al. Cutaneous TRPV1(+) neurons trigger protective innate type 17 anticipatory immunity. Cell. [2019 Aug 8];178(4):919–932 e14.
  • Zhang S, Edwards TN, Chaudhri VK, et al. Nonpeptidergic neurons suppress mast cells via glutamate to maintain skin homeostasis. Cell. [2021 Apr 15];184(8):2151–2166 e16.
  • Kagami S, Rizzo HL, Kurtz SE, et al. IL-23 and IL-17A, but not IL-12 and IL-22, are required for optimal skin host defense against Candida albicans. J Immunol. [2010 Nov 1];185(9):5453–5462.
  • Kaplan DH. In vivo function of Langerhans cells and dermal dendritic cells. Trends Immunol. 2010 Dec;31(12):446–451.
  • Kashem SW, Igyarto BZ, Gerami-Nejad M, et al. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity. [2015 Feb 17];42(2):356–366.
  • Igyarto BZ, Haley K, Ortner D, et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity. [2011 Aug 26];35(2):260–272.
  • Park CO, Fu X, Jiang X, et al. Staged development of long-lived T-cell receptor alphabeta TH17 resident memory T-cell population to Candida albicans after skin infection. J Allergy Clin Immunol. 2018 Aug;142(2):647–662.
  • Naik S, Bouladoux N, Linehan JL, et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature. [2015 Apr 2];520(7545):104–108.
  • Santus W, Barresi S, Mingozzi F, et al. Skin infections are eliminated by cooperation of the fibrinolytic and innate immune systems. Sci Immunol. 2017 Sep 22;2(15): eaan2725.
  • Taheri Sarvtin M, Shokohi T, Hajheydari Z, et al. Evaluation of candidal colonization and specific humoral responses against Candida albicans in patients with psoriasis. Int J Dermatol. 2014 Dec;53(12):e555–60.
  • Zhang E, Tanaka T, Tajima M, et al. Characterization of the skin fungal microbiota in patients with atopic dermatitis and in healthy subjects. Microbiol Immunol. 2011 Sep;55(9):625–632.
  • Hurabielle C, Link VM, Bouladoux N, et al. Immunity to commensal skin fungi promotes psoriasiform skin inflammation. Proc Natl Acad Sci U S A. [2020 Jul 14];117(28):16465–16474.
  • Strollo S, Lionakis MS, Adjemian J, et al. Epidemiology of hospitalizations associated with invasive Candidiasis, United States, 2002-2012(1). Emerg Infect Dis. 2016 Jan;23(1):7–13.
  • Ricotta EE, Lai YL, Babiker A, et al. Invasive candidiasis species distribution and trends, United States, 2009-2017. J Infect Dis. [2021 Apr 8];223(7):1295–1302.
  • Kullberg BJ, Arendrup MC. Invasive Candidiasis. N Engl J Med. 2015 Oct 8;373(15):1445–1456.
  • Teo YJ, Ng SL, Mak KW, et al. Renal CD169(++) resident macrophages are crucial for protection against acute systemic candidiasis. Life Sci Alliance. 2021 May;4(5): e202000890.
  • Qian Q, Jutila MA, Van Rooijen N, et al. Elimination of mouse splenic macrophages correlates with increased susceptibility to experimental disseminated candidiasis. J Immunol. [1994 May 15];152(10):5000–5008.
  • Break TJ, Hoffman KW, Swamydas M, et al. Batf3-dependent CD103(+) dendritic cell accumulation is dispensable for mucosal and systemic antifungal host defense. Virulence. 2016;7(7):826–835.
  • Desai JV, Lionakis MS. The role of neutrophils in host defense against invasive fungal infections. Curr Clin Microbiol Rep. 2018 Sep;5(3):181–189.
  • Lionakis MS, Fischer BG, Lim JK, et al. Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis. PLoS Pathog. 2012;8(8):e1002865.
  • Hopke A, Scherer A, Kreuzburg S, et al. Neutrophil swarming delays the growth of clusters of pathogenic fungi. Nat Commun. [2020 Apr 27];11(1):2031.
  • Lammermann T, Afonso PV, Angermann BR, et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature. [2013 Jun 20];498(7454):371–375.
  • Romani L, Mencacci A, Cenci E, et al. An immunoregulatory role for neutrophils in CD4+ T helper subset selection in mice with candidiasis. J Immunol. [1997 Mar 1];158(5):2356–2362.
  • Kasper L, Konig A, Koenig PA, et al. The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat Commun. [2018 Oct 15];9(1):4260.
  • Swidergall M, Khalaji M, Solis NV, et al. Candidalysin is required for neutrophil recruitment and virulence during systemic Candida albicans infection. J Infect Dis. [2019 Sep 26];220(9):1477–1488.
  • Drummond RA, Collar AL, Swamydas M, et al. CARD9-dependent neutrophil recruitment protects against fungal invasion of the central nervous system. PLoS Pathog. 2015 Dec;11(12):e1005293.
  • Snarr BD, Drummond RA, Lionakis MS. It’s all in your head: antifungal immunity in the brain. Curr Opin Microbiol. 2020 Dec;58:41–46.
  • Fitzpatrick Z, Frazer G, Ferro A, et al. Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature. 2020 Nov;587(7834):472–476.
  • Lin L, Ibrahim AS, Xu X, et al. Th1-Th17 cells mediate protective adaptive immunity against staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog. 2009 Dec;5(12): e1000703.
  • Branzk N, Lubojemska A, Hardison SE, et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol. 2014 Nov;15(11):1017–1025.
  • Warnatsch A, Tsourouktsoglou TD, Branzk N, et al. Reactive oxygen species localization programs inflammation to clear microbes of different size. Immunity. [2017 Mar 21];46(3):421–432.
  • Urban CF, Ermert D, Schmid M, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009 Oct;5(10):e1000639.
  • Urban CF, Backman E. Eradicating, retaining, balancing, swarming, shuttling and dumping: a myriad of tasks for neutrophils during fungal infection. Curr Opin Microbiol. 2020 Dec;58:106–115.
  • Lehman HK, Segal BH. The role of neutrophils in host defense and disease. J Allergy Clin Immunol. 2020 Jun;145(6):1535–1544.
  • Byrd AS, O’Brien XM, Johnson CM, et al. An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans. J Immunol. [2013 Apr 15];190(8):4136–4148.
  • Wu SY, Weng CL, Jheng MJ, et al. Candida albicans triggers NADPH oxidase-independent neutrophil extracellular traps through dectin-2. PLoS Pathog. 2019 Nov;15(11): e1008096.
  • Guiducci E, Lemberg C, Kung N, et al. Candida albicans-induced netosis is independent of peptidylarginine deiminase 4. Front Immunol. 2018 Jul 9;9:1573.
  • Warris A, Ballou ER. Oxidative responses and fungal infection biology. Semin Cell Dev Biol. 2019 May;89:34–46.
  • Reeves EP, Lu H, Lortat-Jacob H, et al. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature. [2002 Mar 21];416(6878):291–297.
  • Ermert D, Niemiec MJ, Rohm M, et al. Candida albicans escapes from mouse neutrophils. J Leukoc Biol. 2013 Aug;94(2):223–236.
  • Li X, Utomo A, Cullere X, et al. The beta-glucan receptor Dectin-1 activates the integrin Mac-1 in neutrophils via Vav protein signaling to promote Candida albicans clearance. Cell Host Microbe. [2011 Dec 15];10(6):603–615.
  • Henriet S, Verweij PE, Holland SM, et al. Invasive fungal infections in patients with chronic granulomatous disease. Adv Exp Med Biol. 2013;764:27–55.
  • van de Geer A, Nieto-Patlan A, Kuhns DB, et al. Inherited p40phox deficiency differs from classic chronic granulomatous disease. J Clin Invest. [2018 Aug 31];128(9):3957–3975.
  • Lehrer RI, Cline MJ. Leukocyte myeloperoxidase deficiency and disseminated candidiasis: the role of myeloperoxidase in resistance to Candida infection. J Clin Invest. 1969 Aug;48(8):1478–1488.
  • Swamydas M, Gao JL, Break TJ, et al. CXCR1-mediated neutrophil degranulation and fungal killing promote Candida clearance and host survival. Sci Transl Med. [2016 Jan 20];8(322):322ra10.
  • Wirnsberger G, Zwolanek F, Stadlmann J, et al. Jagunal homolog 1 is a critical regulator of neutrophil function in fungal host defense. Nat Genet. 2014 Sep;46(9):1028-+.
  • Gazendam R, Hamme JL, Tool A, et al. Two independent killing mechanisms of Candida albicans by human neutrophils: evidence from innate immunity defects. J Clin Immunol. 2014;34:S142–S142.
  • Lionakis MS, Swamydas M, Fischer BG, et al. CX3CR1-dependent renal macrophage survival promotes Candida control and host survival. J Clin Invest. 2013 Dec;123(12):5035–5051.
  • Lionakis MS, Albert ND, Swamydas M, et al. Pharmacological blockade of the chemokine receptor CCR1 protects mice from systemic candidiasis of hematogenous origin. Antimicrob Agents Chemother. 2017 Mar;61(3): e02365–16.
  • Lee EKS, Gillrie MR, Li L, et al. Leukotriene B4-mediated neutrophil recruitment causes pulmonary capillaritis during lethal fungal sepsis. Cell Host Microbe. [2018 Jan 10];23(1):121–133 e4.
  • Zwolanek F, Riedelberger M, Stolz V, et al. The non-receptor tyrosine kinase tec controls assembly and activity of the noncanonical caspase-8 inflammasome. PLoS Pathog. 2014 Dec;10(12):e1004525.
  • Garg AV, Amatya N, Chen K, et al. MCPIP1 endoribonuclease activity negatively regulates interleukin-17-mediated signaling and inflammation. Immunity. [2015 Sep 15];43(3):475–487.
  • Naseem S, Frank D, Konopka JB, et al. Protection from systemic Candida albicans infection by inactivation of the Sts phosphatases. Infect Immun. 2015 Feb;83(2):637–645.
  • Huang JL, Meng SS, Hong SJ, et al. IL-17C is required for lethal inflammation during systemic fungal infection. Cell Mol Immunol. 2016 Jul;13(4):474–483.
  • Del Fresno C, Saz-Leal P, Enamorado M, et al. DNGR-1 in dendritic cells limits tissue damage by dampening neutrophil recruitment. Science. [2018 Oct 19];362(6412):351–356.
  • Ramani K, Jawale CV, Verma AH, et al. Unexpected kidney-restricted role for IL-17 receptor signaling in defense against systemic Candida albicans infection. JCI Insight. 2018 May 3;3(9): e98241.
  • Candon S, Rammaert B, Foray AP, et al. Chronic disseminated candidiasis during hematological malignancies: an immune reconstitution inflammatory syndrome with expansion of pathogen-specific t helper type 1 cells. J Infect Dis. [2020 May 11];221(11):1907–1916.
  • Bryant K, Maxfield C, Rabalais G. Renal candidiasis in neonates with candiduria. Pediatr Infect Dis J. 1999 Nov;18(11):959–963.
  • Tomashefski JF Jr., Abramowsky CR. Candida-associated renal papillary necrosis. Am J Clin Pathol. 1981 Feb;75(2):190–194.
  • Heung LJ. Monocytes and the host response to fungal pathogens. Front Cell Infect Microbiol. 2020;10:34.
  • Dominguez-Andres J, Feo-Lucas L, Minguito de La Escalera M, et al. Inflammatory Ly6C(high) monocytes protect against candidiasis through IL-15-driven nk cell/neutrophil activation. Immunity. [2017 Jun 20];46(6):1059–1072 e4.
  • Ngo LY, Kasahara S, Kumasaka DK, et al. Inflammatory monocytes mediate early and organ-specific innate defense during systemic candidiasis. J Infect Dis. [2014 Jan 1];209(1):109–119.
  • Nguyen NZN, Tran VG, Lee S, et al. CCR5-mediated recruitment of nk cells to the kidney is a critical step for host defense to systemic Candida albicans infection. Immune Netw. 2020 Dec;20(6): e49.
  • Bar E, Whitney PG, Moor K, et al. IL-17 regulates systemic fungal immunity by controlling the functional competence of NK cells. Immunity. [2014 Jan 16];40(1):117–127.
  • Nur S, Sparber F, Lemberg C, et al. IL-23 supports host defense against systemic Candida albicans infection by ensuring myeloid cell survival. PLoS Pathog. 2019 Dec;15(12):e1008115.
  • Collar AL, Swamydas M, O’Hayre M, et al. The homozygous CX3CR1-M280 mutation impairs human monocyte survival. JCI Insight. 2018 Feb 8;3(3):e95417.
  • Break TJ, Jaeger M, Solis NV, et al. CX3CR1 is dispensable for control of mucosal Candida albicans infections in mice and humans. Infect Immun. 2015 Mar;83(3):958–965.
  • Leonardi I, Li X, Semon A, et al. CX3CR1(+) mononuclear phagocytes control immunity to intestinal fungi. Science. [2018 Jan 12];359(6372):232–236.
  • Munoz JF, Delorey T, Ford CB, et al.Coordinated host-pathogen transcriptional dynamics revealed using sorted subpopulations and single macrophages infected with Candida albicans. Nat Commun. 2019 Apr 8;10(01): 1607.
  • Tam JM, Reedy JL, Lukason DP, et al. Tetraspanin CD82 organizes Dectin-1 into signaling domains to mediate cellular responses to Candida albicans. J Immunol. [2019 Jun 1];202(11):3256–3266.
  • Bain JM, Alonso MF, Childers DS, et al. Immune cells fold and damage fungal hyphae. Proc Natl Acad Sci U S A. 2021 Apr 13;118(15): e2020484118.
  • Westman J, Walpole GFW, Kasper L, et al. Lysosome fusion maintains phagosome integrity during fungal infection. Cell Host Microbe. [2020 Dec 9];28(6):798–812 e6.
  • Wellington M, Koselny K, Sutterwala FS, et al. Candida albicans triggers NLRP3-mediated pyroptosis in macrophages. Eukaryot Cell. 2014 Feb;13(2):329–340.
  • Uwamahoro N, Verma-Gaur J, Shen HH, et al. The pathogen Candida albicans hijacks pyroptosis for escape from macrophages. mBio. [2014 Mar 25];5(2):e00003–14.
  • Vylkova S, Lorenz MC. Phagosomal neutralization by the fungal pathogen Candida albicans induces macrophage pyroptosis. Infect Immun. 2017 Feb;85(2): e00832–16.
  • Xiao Y, Tang J, Guo H, et al. Targeting CBLB as a potential therapeutic approach for disseminated candidiasis. Nat Med. 2016 Aug;22(8):906–914.
  • Wirnsberger G, Zwolanek F, Asaoka T, et al. Inhibition of CBLB protects from lethal Candida albicans sepsis. Nat Med. 2016 Aug;22(8):915–923.
  • Zhao X, Guo Y, Jiang C, et al. JNK1 negatively controls antifungal innate immunity by suppressing CD23 expression. Nat Med. 2017 Mar;23(3):337–346.
  • Dominguez-Andres J, Arts RJW, Ter Horst R, et al. Rewiring monocyte glucose metabolism via C-type lectin signaling protects against disseminated candidiasis. PLoS Pathog. 2017 Sep;13(9): e1006632.
  • Tucey TM, Verma J, Harrison PF, et al. Glucose homeostasis is important for immune cell viability during candida challenge and host survival of systemic fungal infection. Cell Metab. [2018 May 1];27(5):988-+.
  • Kim VY, Batty A, Li J, et al. Glutathione reductase promotes fungal clearance and suppresses inflammation during systemic Candida albicans infection in mice. J Immunol. [2019 Oct 15];203(8):2239–2251.
  • Jawale CV, Ramani K, Li DD, et al. Restoring glucose uptake rescues neutrophil dysfunction and protects against systemic fungal infection in mouse models of kidney disease. Sci Transl Med. 2020 Jun 17;12(548: eaay5691.
  • Netea MG, Dominguez-Andres J, Barreiro LB, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol. 2020 Jun;20(6):375–388.
  • Quintin J, Saeed S, Martens JHA, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe. [2012 Aug 16];12(2):223–232.
  • Saeed S, Quintin J, Kerstens HH, et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science. [2014 Sep 26];345(6204):1251086.
  • Johnson MD, Plantinga TS, van de Vosse E, et al. Cytokine gene polymorphisms and the outcome of invasive candidiasis: a prospective cohort study. Clin Infect Dis. [2012 Feb 15];54(4):502–510.
  • Kumar V, Cheng SC, Johnson MD, et al. Immunochip SNP array identifies novel genetic variants conferring susceptibility to candidaemia. Nat Commun. 2014 Sep 8;5:4675.
  • Smeekens SP, Ng A, Kumar V, et al. Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans. Nat Commun. 2013;4:1342.
  • Wojtowicz A, Tissot F, Lamoth F, et al. Polymorphisms in tumor necrosis factor-alpha increase susceptibility to intra-abdominal Candida infection in high-risk surgical ICU patients*. Crit Care Med. 2014 Apr;42(4):e304–8.
  • Arvanitis M, Anagnostou T, Fuchs BB, et al. Molecular and nonmolecular diagnostic methods for invasive fungal infections. Clin Microbiol Rev. 2014 Jul;27(3):490–526.
  • Roemer T, Krysan DJ. Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med. 2014 May 1; 4(5): a019703.
  • Odds FC, Brown AJ, Gow NA. Antifungal agents: mechanisms of action. Trends Microbiol. 2003 Jun;11(6):272–279.
  • Balfour JA, Faulds DT. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in superficial mycoses. Drugs. 1992 Feb;43(2):259–284.
  • Kobayashi D, Kondo K, Uehara N, et al. Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Antimicrob Agents Chemother. 2002 Oct;46(10):3113–3117.
  • Anderson TM, Clay MC, Cioffi AG, et al. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol. 2014 May;10(5):400–406.
  • Felton T, Troke PF, Hope WW. Tissue penetration of antifungal agents. Clin Microbiol Rev. 2014 Jan;27(1):68–88.
  • Donovick R, Gold W, Pagano JF, et al. Amphotericins A and B, antifungal antibiotics produced by a streptomycete. I. In vitro studies. Antibiot Annu. 1955;3:579–586.
  • Cavassin FB, Bau-Carneiro JL, Vilas-Boas RR, et al. Sixty years of amphotericin b: an overview of the main antifungal agent used to treat invasive fungal infections. Infect Dis Ther. 2021 Mar;10(1):115–147.
  • Lu R, Hollingsworth C, Qiu J, et al. Efficacy of oral encochleated amphotericin b in a mouse model of cryptococcal meningoencephalitis. mBio. 2019 May 28;10(3): e00724–19.
  • Sanglard D, Ischer F, Parkinson T, et al. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agents Chemother. 2003 Aug;47(8):2404–2412.
  • Miyazaki Y, Geber A, Miyazaki H, et al. Cloning, sequencing, expression and allelic sequence diversity of ERG3 (C-5 sterol desaturase gene) in Candida albicans. Gene. [1999 Aug 5];236(1):43–51.
  • Vermes A, Guchelaar HJ, Dankert J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother. 2000 Aug;46(2):171–179.
  • Vermes A, Guchelaar HJ, Dankert J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemoth. 2000 Aug;46(2):171–179.
  • Bhattacharya S, Esquivel BD, White TC. Overexpression or deletion of ergosterol biosynthesis genes alters doubling time, response to stress agents, and drug susceptibility in saccharomyces cerevisiae. mBio. 2018 Jul 24;9(4): e01291–18.
  • Kobayashi D, Kondo K, Uehara N, et al. Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Antimicrob Agents Ch. 2002 Oct;46(10):3113–3117.
  • Nett JE, Andes DR. Antifungal agents: spectrum of activity, pharmacology, and clinical indications. Infect Dis Clin North Am. 2016 Mar;30(1):51–83.
  • Lortholary O, Desnos-Ollivier M, Sitbon K, et al. Recent exposure to caspofungin or fluconazole influences the epidemiology of candidemia: a prospective multicenter study involving 2,441 patients. Antimicrob Agents Chemother. 2011 Feb;55(2):532–538.
  • Castanheira M, Messer SA, Rhomberg PR, et al. Isavuconazole and nine comparator antifungal susceptibility profiles for common and uncommon Candida species collected in 2012: application of new CLSI clinical breakpoints and epidemiological cutoff values. Mycopathologia. 2014 Aug;178(1–2):1–9.
  • Enwuru CA, Ogunledun A, Idika N, et al. Fluconazole resistant opportunistic oro-pharyngeal Candida and non-Candida yeast-like isolates from HIV infected patients attending ARV clinics in Lagos, Nigeria. Afr Health Sci. 2008 Sep;8(3):142–148.
  • Martinez M, Lopez-Ribot JL, Kirkpatrick WR, et al. Heterogeneous mechanisms of azole resistance in Candida albicans clinical isolates from an HIV-infected patient on continuous fluconazole therapy for oropharyngeal candidosis. J Antimicrob Chemother. 2002 Mar;49(3):515–524.
  • Gao J, Wang H, Li Z, et al. Candida albicans gains azole resistance by altering sphingolipid composition. Nat Commun. [2018 Oct 29];9(1):4495.
  • Bhattacharya S, Sae-Tia S, Fries BC. Candidiasis and mechanisms of antifungal resistance. Antibiotics (Basel). 2020 Jun 9;9(6): 312.
  • Wiederhold NP. The antifungal arsenal: alternative drugs and future targets. Int J Antimicrob Agents. 2018 Mar;51(3):333–339.
  • Break TJ, Desai JV, Healey KR, et al. VT-1598 inhibits the in vitro growth of mucosal Candida strains and protects against fluconazole-susceptible and -resistant oral candidiasis in IL-17 signalling-deficient mice. J Antimicrob Chemother. [2018 Aug 1];73(8):2089–2094.
  • Break TJ, Desai JV, Natarajan M, et al. VT-1161 protects mice against oropharyngeal candidiasis caused by fluconazole-susceptible and -resistant Candida albicans. J Antimicrob Chemother. [2018 Jan 1];73(1):151–155.
  • Brand SR, Degenhardt TP, Person K, et al. A phase 2, randomized, double-blind, placebo-controlled, dose-ranging study to evaluate the efficacy and safety of orally administered VT-1161 in the treatment of recurrent vulvovaginal candidiasis. Am J Obstet Gynecol. 2018 Jun;218(6):624 e1–624 e9.
  • Onishi J, Meinz M, Thompson J, et al. Discovery of novel antifungal (1,3)-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother. 2000 Feb;44(2):368–377.
  • Beyda ND, Lewis RE, Garey KW. Echinocandin resistance in Candida species: mechanisms of reduced susceptibility and therapeutic approaches. Ann Pharmacother. 2012 Jul-Aug;46(7–8):1086–1096.
  • Douglas CM, D’Ippolito JA, Shei GJ, et al. Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother. 1997 Nov;41(11):2471–2479.
  • Shields RK, Nguyen MH, Press EG, et al. Rate of FKS mutations among consecutive Candida isolates causing bloodstream infection (vol 59, pg 7465, 2015). Antimicrob Agents Ch. 2016 Mar;60(3):1954.
  • Arendrup MC, Cuenca-Estrella M, Lass-Florl C, et al. Breakpoints for antifungal agents: an update from EUCAST focussing on echinocandins against Candida spp. and triazoles against aspergillus spp. Drug Resist Updat. 2013 Dec;16(6):81–95.
  • Healey KR, Zhao Y, Perez WB, et al. Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance. Nat Commun. 2016 Mar 29;7:11128.
  • Legrand M, Chan CL, Jauert PA, et al. Role of DNA mismatch repair and double-strand break repair in genome stability and antifungal drug resistance in Candida albicans. Eukaryot Cell. 2007 Dec;6(12):2194–2205.
  • Arendrup MC, Jorgensen KM, Hare RK, et al. In vitro activity of ibrexafungerp (SCY-078) against candida auris isolates as determined by EUCAST methodology and comparison with activity against C. albicans and C. glabrata and with the activities of six comparator agents. Antimicrob Agents Chemother. 2020 Feb 21;64:(3).
  • Sobel JD, Borroto-Esoda K, Azie N, et al. In vitro pH activity of ibrexafungerp against fluconazole-susceptible and -resistant candida isolates from women with vulvovaginal Candidiasis. Antimicrob Agents Chemother. [2021 Jul 16];65(8):e0056221.
  • Umemura M, Okamoto M, Nakayama K, et al. GWT1 gene is required for inositol acylation of glycosylphosphatidylinositol anchors in yeast. J Biol Chem. [2003 Jun 27];278(26):23639–23647.
  • Hata K, Horii T, Miyazaki M, et al. Efficacy of oral E1210, a new broad-spectrum antifungal with a novel mechanism of action, in murine models of candidiasis, aspergillosis, and fusariosis. Antimicrob Agents Chemother. 2011 Oct;55(10):4543–4551.
  • Petraitiene R, Petraitis V, Maung BBW, et al. Efficacy and pharmacokinetics of fosmanogepix (APX001) in the treatment of candida endophthalmitis and hematogenous meningoencephalitis in nonneutropenic rabbits. Antimicrob Agents Chemother. 2021 Feb 17;65(3):e01795–20.
  • Shaw KJ, Ibrahim AS. Fosmanogepix: a review of the first-in-class broad spectrum agent for the treatment of invasive fungal infections. J Fungi (Basel). 2020 Oct 22;6(4):239.
  • Zhang F, Zhao M, Braun DR, et al. A marine microbiome antifungal targets urgent-threat drug-resistant fungi. Science. [2020 Nov 20];370(6519):974–978.
  • Zhao M, Zhang F, Zarnowski R, et al. Turbinmicin inhibits Candida biofilm growth by disrupting fungal vesicle-mediated trafficking. J Clin Investig. 2021 Mar 1;131(5):e145123.
  • Perfect JR. The antifungal pipeline: a reality check. Nat Rev Drug Discov. 2017 Sep;16(9):603–616.
  • Hoenigl M, Sprute R, Egger M, et al. The antifungal pipeline: fosmanogepix, ibrexafungerp, olorofim, opelconazole, and rezafungin. Drugs. 2021 Oct;81(15):1703–1729.