2,545
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Inhibition of cell proliferation by Tas of foamy viruses through cell cycle arrest or apoptosis underlines the different mechanisms of virus–host interactions

, , , , , , , , , , & show all
Pages 342-354 | Received 21 Oct 2021, Accepted 11 Jan 2022, Published online: 08 Feb 2022

References

  • Hayward A. Origin of the retroviruses: when, where, and how? Curr Opin Virol. 2017;25:23–27.
  • Aris Katzourakis PA, Jia H, and Wolfe ND, et al. Discovery of prosimian and afrotherian foamy viruses and potential cross species transmissions amidst stable and ancient mammalian co-evolution. Retrovirology. 2014;11(1).
  • Robert Rustigian PJ, Reihart H. Infection of monkey kidney tissue cultures with virus-like agents. Experimental Biology and Medicine. 1955;88(1):8–16.
  • Murray SM, Picker LJ, Axthelm MK, et al. Replication in a superficial epithelial cell niche explains the lack of pathogenicity of primate foamy virus infections. J Virol. 2008;82(12):5981–5985.
  • Mel Campbell CE, and Paul A. The simian foamy virus type 1 transcriptional transactivator (Tas) binds and activates an enhancer element in the gag gene. J Virol. 1996;70(10):6847-55.
  • Regad T, Saib A, Lallemand‐Breitenbach V, et al. PML mediates the interferon-induced antiviral state against a complex retrovirus via its association with the viral transactivator. The EMBO Journal. 2001;20(13):3495–3505.
  • Dong L, Cheng Q, Wang Z, et al. Human Pirh2 is a novel inhibitor of prototype foamy virus replication. Viruses. 2015;7(4):1668–1684.
  • Tan J, Qiao W, Wang J, et al. IFP35 is involved in the antiviral function of interferon by association with the viral tas transactivator of bovine foamy virus. J Virol. 2008;82(9):4275–4283.
  • Hu X, Yang W, Liu R, et al. N-Myc interactor inhibits prototype foamy virus by sequestering viral Tas protein in the cytoplasm. J Virol. 2014;88(12):7036–7044.
  • Zhang J, Wang C, Tuo X, et al. Prototype foamy virus downregulates RelB expression to facilitate viral replication. FEBS Open Bio. 2020;10(10):2137–2148.
  • Kvansakul M. Viral infection and apoptosis. Viruses. 2017;9(12):12.
  • Czabotar PE, Lessene G, Strasser A, et al. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49–63.
  • Riedl SJ, Salvesen GS. The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol. 2007;8(5):405–413.
  • Fasano C, Disciglio V, Bertora S, et al. FOXO3a from the nucleus to the mitochondria: a round trip in cellular stress response. Cells. 2019;8(9):1110.
  • Guo F, Yu X, Xu A, et al. Japanese encephalitis virus induces apoptosis by inhibiting Foxo signaling pathway. Vet Microbiol. 2018;220:73–82.
  • Obexer P, Hagenbuchner J, Unterkircher T, et al. Repression of BIRC5/survivin by FOXO3/FKHRL1 sensitizes human neuroblastoma cells to DNA damage-induced apoptosis. Mol Biol Cell. 2009;20(7):2041–2048.
  • Gilley J, Coffer PJ, Ham J. FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J Cell Biol. 2003;162(4):613–622.
  • Hagenbuchner J, Ausserlechner MJ. Mitochondria and FOXO3: breath or die. Front Physiol. 2013;4:147.
  • Ron D, Habener JF. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 1992;6(3):439–453.
  • Yao Y, Lu Q, Hu Z, et al. A non-canonical pathway regulates ER stress signaling and blocks ER stress-induced apoptosis and heart failure. Nat Commun. 2017;8(1):133.
  • Ayaub EA, Kolb PS, Mohammed-Ali Z, et al. GRP78 and CHOP modulate macrophage apoptosis and the development of bleomycin-induced pulmonary fibrosis. J Pathol. 2016;239(4):411–425.
  • Wang H, Xu Y, Sun J, et al. The novel curcumin derivative 1g induces mitochondrial and ER-stress-dependent apoptosis in colon cancer cells by induction of ROS production. Front Oncol. 2021;11:644197.
  • Qian M, Tan HM, Yu N, et al. Inactivated sendai virus induces ROS-dependent apoptosis and autophagy in human prostate cancer cells. Biomed Environ Sci. 2018;31(4):280–289.
  • You L, Chen J, Liu W, et al. Enterovirus 71 induces neural cell apoptosis and autophagy through promoting ACOX1 downregulation and ROS generation. Virulence. 2020;11(1):537–553.
  • Li M, Wang J, Yang L, et al. eRF3b, a biomarker for hepatocellular carcinoma, influences cell cycle and phosphoralation status of 4E-BP1. Plos One. 2014;9(1):e86371.
  • Kamada R, Kudoh F, Ito S, et al. Metal-dependent Ser/Thr protein phosphatase PPM family: evolution, structures, diseases and inhibitors. Pharmacol Ther. 2020;215:107622.
  • Ishida A, Sueyoshi N, Kameshita I. Functions and dysfunctions of Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) and CaMKP-N/PPM1E. Arch Biochem Biophys. 2018;640:83–92.
  • Senga Y, Ishida A, Shigeri Y, et al. The phosphatase-resistant isoform of CaMKI, Ca2+/calmodulin-dependent protein kinase Iδ (CaMKIδ), remains in its “primed” form without Ca2+ stimulation. Biochemistry. 2015;54(23):3617–3630.
  • Weng Y, Lin J, Liu H, et al. AMPK activation by Tanshinone IIA protects neuronal cells from oxygen-glucose deprivation. Oncotarget. 2018;9(4):4511–4521.
  • Nimura T, Sugiyama Y, Sueyoshi N, et al. A minimum size homologue of Ca2+/calmodulin-dependent protein kinase IV naturally occurring in zebrafish. J Biochem. 2010;147(6):857–865.
  • Voss M, Paterson J, Kelsall IR, et al. Ppm1E is an in cellulo AMP-activated protein kinase phosphatase. Cell Signal. 2011;23(1):114–124.
  • Chen MB, Liu YY, Cheng LB, et al. AMPKα phosphatase Ppm1E upregulation in human gastric cancer is required for cell proliferation. Oncotarget. 2017;8(19):31288–31296.
  • Feng S, Zhang L, Liu X, et al. Low levels of AMPK promote epithelial-mesenchymal transition in lung cancer primarily through HDAC4- and HDAC5-mediated metabolic reprogramming. J Cell Mol Med. 2020;24(14):7789–7801.
  • Rothschild SC, Lee HJ, Ingram SR, et al. Calcium signals act through histone deacetylase to mediate pronephric kidney morphogenesis. Dev Dyn. 2018;247(6):807–817.
  • Marroncelli N, Bianchi M, Bertin M, et al. HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes. Sci Rep. 2018;8(1):3448.
  • Yan Y, Yao S, Jia Z, et al. Iso-suillin-induced DNA damage leading to cell cycle arrest and apoptosis arised from p53 phosphorylation in A549 cells. Eur J Pharmacol. 2021;907:174299.
  • Chu S, Wylie TN, Wylie KM, et al. A virome sequencing approach to feline oral squamous cell carcinoma to evaluate viral causative factors. Vet Microbiol. 2020;240:108491.
  • Holmes EC. The phylogeography of human viruses. Mol Ecol. 2004;13(4):745–756.
  • Mergia ALN, Leung J, Blackwell J. Cell tropism of the simian foamy virus type 1 (SFV-1). J Med Primatol. 1996;25(1):2–7.
  • Christopher D, and Meiering MLL. Reactivation of a complex retrovirus is controlled by a molecular switch and is inhibited by a viral protein. P NATL ACAD SCI USA. 2002;Nov 12;99(23):15130-5.
  • Wagner A, Aboud M, Alonso A, et al. Induction of cellular genes is mediated by the Bel1 transactivator in foamy virus-infected human cells. Journal of Virology. 2000;74(10):4441–4447.
  • Mergia A, Papadi G, Johnson C. Simian foamy virus type 1 (SFV-1) induces apoptosis. Virus Research. 1997;50(2):129–137.
  • Tsukahara T, Kannagi M, Ohashi T, et al. Induction of Bcl-x(L) expression by human T-cell leukemia virus type 1 Tax through NF-kappaB in apoptosis-resistant T-cell transfectants with Tax. J Virol. 1999;73(10):7981–7987.
  • Mori N, Ishikawa C, Senba M. Activation of PKC-δ in HTLV-1-infected T cells. Int J Oncol. 2015;46(4):1609–1618.
  • Macaire H, Riquet A, Moncollin V, et al. Tax protein-induced expression of antiapoptotic Bfl-1 protein contributes to survival of human T-cell leukemia virus type 1 (HTLV-1)-infected T-cells. J Biol Chem. 2012;287(25):21357–21370.
  • Anne Brauweiler JEG, John C, and Nyborg JK. Repression of bax gene expression by the HTLV-I Tax protein_ implications for suppression of apoptosis in virally infected cells. INT J ONCOL. 1996;46(4):1609-18.
  • Pise-Masison CA, Mahieux R, Radonovich M, et al. Insights into the molecular mechanism of p53 inhibition by HTLV type 1 Tax. AIDS Res Hum Retroviruses. 2000;16(16):1669–1675.
  • Mahieux R, Pise-Masison CA, Nicot C, et al. Inactivation of p53 by HTLV type 1 and HTLV type 2 Tax trans-activators. AIDS Res Hum Retroviruses. 2000;16(16):1677–1681.
  • Wright DG, Marchal C, Hoang K, et al. Human T-cell leukemia virus type-1-encoded protein HBZ represses p53 function by inhibiting the acetyltransferase activity of p300/CBP and HBO1. Oncotarget. 2016;7(2):1687–1706.
  • Westendorp MO, VAS K, Schulze-Osthoff R, et al. HIV-1 Tat potentiates TNF-induced NF-kappa B activation and cytotoxicity by altering the cellular redox state. The EMBO Journal. 1995;14(3):546–554.
  • Adeyanju K, Bend JR, Rieder MJ, et al. HIV-1 tat expression and sulphamethoxazole hydroxylamine mediated oxidative stress alter the disulfide proteome in Jurkat T cells. Virol J. 2018;15(1):82.
  • Mühleisen A, Giaisi M, Köhler R, et al. Tax contributes apoptosis resistance to HTLV-1-infected T cells via suppression of Bid and Bim expression. Cell Death Dis. 2014;5(12):e1575.
  • Campestrini J, Silveira DB, Pinto ARHIV-1. Tat-induced bystander apoptosis in Jurkat cells involves unfolded protein responses. Cell Biochem Funct. 2018;36(7):377–386.
  • Clark E, Nava B, Caputi M. Tat is a multifunctional viral protein that modulates cellular gene expression and functions. Oncotarget. 2017;8(16):27569–27581.
  • Dong H, Ye X, Zhong L, et al. Role of FOXO3 activated by HIV-1 Tat in HIV-associated neurocognitive disorder neuronal apoptosis. Front Neurosci. 2019;13:44.
  • Kim N, Kukkonen S, Gupta S, et al. Association of Tat with promoters of PTEN and PP2A subunits is key to transcriptional activation of apoptotic pathways in HIV-infected CD4+ T cells. PLoS Pathog. 2010;6(9):e1001103.
  • Iarovaia OV, Ioudinkova ES, Velichko AK, et al. Manipulation of cellular processes via nucleolus hijaking in the course of viral infection in mammals. Cells. 2021;10(7):1597.
  • Dai X, Zhang X, Miao Y, et al. Canine parvovirus induces G1/S cell cycle arrest that involves EGFR Tyr1086 phosphorylation. Virulence. 2020;11(1):1203–1214.
  • Ishida A, Tsumura K, Oue M, et al. An active C-terminally truncated form of Ca (2+) /calmodulin-dependent protein kinase phosphatase-N (CaMKP-N/PPM1E). Biomed Res Int. 2013;2013:134813.
  • Sueyoshi N, Nimura T, Ishida A, et al. Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP) is indispensable for normal embryogenesis in zebrafish, Danio rerio. Arch Biochem Biophys. 2009;488(1):48–59.
  • He T, Huang J, Chen L, et al. Cyclic AMP represses pathological MEF2 activation by myocyte-specific hypo-phosphorylation of HDAC5. J Mol Cell Cardiol. 2020;145:88–98.
  • Salminen A, Kauppinen A, Kaarniranta K. AMPK/Snf1 signaling regulates histone acetylation: impact on gene expression and epigenetic functions. Cell Signal. 2016;28(8):887–895.
  • Mottet D, Pirotte S, Lamour V, et al. HDAC4 represses p21(WAF1/Cip1) expression in human cancer cells through a Sp1-dependent, p53-independent mechanism. Oncogene. 2009;28(2):243–256.
  • Jiro Kikuchi YF, Hayashi N. Identification of novel p53-binding proteins by biomolecular interaction analysis combined with tandem mass spectrometry. Molecular Biotechnology. 2003;23(3):203–212.
  • Tu SH, Lin YC, and Huang CC, et al. Protein phosphatase Mg2+_Mn2+ dependent 1F promotes smoking-induced breast cancer by inactivating phosphorylated-p53-induced signals. Oncotarget. 2016 ;22;7(47):77516-77531.