1,875
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

Vibrio splendidus virulence to Apostichopus japonicus is mediated by hppD through glutamate metabolism and flagellum assembly

, &
Pages 458-470 | Received 02 Nov 2020, Accepted 23 Feb 2022, Published online: 08 Mar 2022

References

  • Zhang X, Austin B. Haemolysins in Vibrio species. J Appl Microbiol. 2005;98(5):1011–1019.
  • Craig BA, Oliver JD, Munirul A, et al. Vibrio spp. infections. Nat Rev Dis Primers. 2018;4(1):8.
  • Chibani CM, Poehlein A, Roth O, et al. Draft genome sequence of Vibrio splendidus DSM 19640. Genome Announc. 2017;5(48): e01368-17. doi:10.1128/genomeA.01368-17.
  • Thomson R, Macpherson HL, Riaza A, et al. Vibrio splendidus biotype 1 as a cause of mortalities in hatchery-reared larval turbot Scophthalmus maximus(l.). J Appl Microbiol. 2005;99(2):243–250. DOI:10.1111/j.1365-2672.2005.02602.x
  • Lacoste A, Jalabert F, Malham S, et al. A Vibrio splendidus strain is associated with summer mortality of juvenile oysters Crassostrea gigas in the Bay of Morlaix (North Brittany, France). Dis Aquat Organ. 2001;46(2):139–145. DOI:10.3354/dao046139
  • Li H, Qiao G, Li Q, et al. Biological characteristics and pathogenicity of a highly pathogenic Shewanella marisflavi infecting sea cucumber, Apostichopus japonicus. J Fish Dis. 2010;33(11):865–877. DOI:10.1111/j.1365-2761.2010.01189.x
  • Rafidah O, Firdaus-Nawi M, Raehanah MSS, et al. An outbreak of Vibrio alginolyticus infection in juvenile sea cucumbers Holothuria scabra in Sabah, Malaysia. Pertanika J Trop Agric Sci. 2017;40:691–696.
  • Delroisse J, Wayneberghe KV, Flammang P, et al. Epidemiology of a Skin Ulceration Disease (SKUD) in the sea cucumber Holothuria scabra with a review on the SKUDs in Holothuroidea (Echinodermata). Sci Rep. 2020;10(1):22150. DOI:10.1038/s41598-020-78876-0
  • Eeckhaut I, Wayenberghe KV, Nicolas F, et al. Skin ulcerations in Holothuria scabra can be induced by various types of food. SPC Beche-de-Mer Inf Bull. 2019;39:31–35.
  • Deng H, He C, Zhou Z, et al. Isolation and pathogenicity of pathogens from skin ulceration disease and viscera ejection syndrome of the sea cucumber Apostichopus japonicus. Aquaculture. 2009;287(1–2):18–27. DOI:10.1016/j.aquaculture.2008.10.015
  • Liu H, Zheng F, Sun X, et al. Identification of the pathogens associated with skin ulceration and peristome tumescence in cultured sea cucumbers Apostichopus japonicus (Selenka). J Invertebr Pathol. 2010;105(3):236–242. DOI:10.1016/j.jip.2010.05.016
  • Austin B, Austin DA. Bacterial fish pathogens: disease of farmed and wild fish. 3rd edn (revised ed. Godalming: Springer-Praxis; 1999.
  • Zhang C, Liang W, Zhang W, et al. Characterization of a metalloprotease involved in Vibrio splendidus infection in the sea cucumber, Apostichopus japonicus. Microb Pathog. 2016;101:96–103.
  • Zhang C, Zhang W, Liang W, et al. A sigma factor RpoD negatively regulates temperature-dependent metalloprotease expression in a pathogenic Vibrio splendidus. Microb Pathog. 2019;128:311–316.
  • Zhang S, Liu N, Liang W, et al. Quorum sensing-disrupting coumarin suppressing virulence phenotypes in Vibrio splendidus. Appl Microbiol Biotechnol. 2017;101(8):3371–3378. DOI:10.1007/s00253-016-8009-3
  • Song T, Liu H, Lv T, et al. Characteristics of the iron uptake-related process of a pathogenic Vibrio splendidus strain associated with massive mortalities of the sea cucumber Apostichopus japonicus. J Invertebr Pathol. 2018;155:25–31.
  • Liang W, Zhang C, Liu N, et al. Cloning and characterization of Vshppd, a gene inducing haemolysis and immunity response of Apostichopus japonicus. Aquaculture. 2016;464:246–252.
  • Moran GR. 4-Hydroxyphenylpyruvate dioxygenase. Arch Biochem Biophys. 2005;433(1):117–128.
  • Hegedus ZL, Nayak U. Homogentisic acid and structurally related compounds as intermediates in plasma soluble melanin formation and in tissue toxicities. Arch Int Physiol Biochim Biophys. 1994;102(3):175–181.
  • Hegedus ZL. The probable involvement of soluble and deposited melanins, their intermediates and the reactive oxygen side-products in human diseases and aging. Toxicology. 2000;145(2–3):85–101.
  • Lee CM, Yeo YS, Lee JH, et al. Identification of a novel 4-hydroxyphenylpyruvate dioxygenase from the soil metagenome. Biochem Biophys Res Commun. 2008;370(2):322–326. DOI:10.1016/j.bbrc.2008.03.102
  • Liang W, Zhang W, Shao Y, et al. Dual functions of a 4-hydroxyphenylpyruvate dioxygenase for Vibrio splendidus survival and infection. Microb Pathog. 2018;120:47–54.
  • Sorek R, Cossart P. Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet. 2010;11(1):9–16.
  • Zhang W, Liang W, Li C. Inhibition of marine Vibrio sp. by pyoverdine from Pseudomonas aeruginosa PA1. J Hazard Mater. 2016;302:217–224.
  • Hu Y, Liu C, Hou J, et al. Identification, characterization, and molecular application of a virulence-associated autotransporter from a pathogenic Pseudomonas fluorescens strain. Appl Environ Microbiol. 2009;75(13):4333–4340. DOI:10.1128/AEM.00159-09
  • Gu D, Meng H, Li Y, et al. A GntR family transcription factor (VPA1701) for swarming motility and colonization of Vibrio parahaemolyticus. Pathogens. 2019;8(4):235. DOI:10.3390/pathogens8040235
  • Langmead B, and Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–359. doi:10.1038/nmeth.1923.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−δδct method. Methods. 2001;25(4):402–408.
  • Luo G, Huang L, Su Y, et al. flra, ?rb and ?rc regulate adhesion by controlling the expression of critical virulence genes in Vibrio alginolyticus. Emerg Microbes Infect. 2016;5(8):e85. DOI:10.1038/emi.2016.82
  • Wang Z, Lin B, Mostaghim A, et al. Vibrio campbellii hmgA-mediated pyomelanization impairs quorum sensing, virulence, and cellular fitness. Front Microbiol. 2013;4:379.
  • Pathak S, Awuh JA, Leversen NA, et al. Counting mycobacteria in infected human cells and mouse tissue: a comparison between qPCR and CFU. PLoS One. 2012;7(4):e34931. DOI:10.1371/journal.pone.0034931
  • Ouwehand AC, Kirjavainen PV, Gronlund MM, et al. Adhesion of probiotic micro-organisms to intestinal mucus. Int Dairy J. 1999;9(9):623–630. DOI:10.1016/S0958-6946(99)00132-6
  • Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev. 2013;26(2):185–230.
  • Qin Y, Lin G, Chen W, et al. Flagellar motility contributes to the invasion and survival of Aeromonas hydrophila in Anguilla japonica macrophages. Fish Shellfish Immunol. 2014;39(2):273–279. DOI:10.1016/j.fsi.2014.05.016
  • Luo G, Sun Y, Huang L, et al. Time-Resolved dual RNA-seq of tissue uncovers pseudomonas plecoglossicida key virulence genes in host-pathogen interaction with Epinephelus coioides. Environ Microbiol. 2020;22(2):677–693. DOI:10.1111/1462-2920.14884
  • Guo L, Huang L, Su Y, et al. secA, secD, secF, yajC, and yidC contribute to the adhesion regulation of Vibrio alginolyticus. Microbiologyopen. 2018;7(2):e00551. DOI:10.1002/mbo3.551
  • Liu W, Huang L, Su Y, et al. Contributions of the oligopeptide permeases in multistep of Vibrio alginolyticus pathogenesis. Microbiologyopen. 2017;6(5):e00511. DOI:10.1002/mbo3.511
  • Singh D, Kumar J, Kumar A. Isolation of pyomelanin from bacteria and evidences showing its synthesis by 4-hydroxyphenylpyruvate dioxygenase enzyme encoded by hppD gene. Int J Biol Macromol. 2018;119:864–873.
  • Denoya CD, Skinner DD, Morgenstern MR. A Streptomyces avermitilis gene encoding a 4-hydroxyphenylpyruvic acid dioxygenase-like protein that directs the production of homogentisic acid and an ochronotic pigment in Escherichia coli. J Bacteriol. 1994;176(17):5312–5319.
  • Brownlee JM, Johnson-Winters K, Harrison DH, et al. Structure of the ferrous form of (4-hydroxyphenyl) pyruvate dioxygenase from Streptomyces avermitilis in complex with the therapeutic herbicide, NTBC. Biochemistry. 2004;43(21):6370–6377. DOI:10.1021/bi049317s
  • Liu B, Peng Q, Sheng M, et al. Isolation and characterization of a topramezone-resistant 4-hydroxyphenylpyruvate dioxygenase from Sphingobium sp. TPM-19. J Agric Food Chem. 2020;68(4):1022–1029. DOI:10.1021/acs.jafc.9b06871
  • Serre L, Sailland A, Sy D, et al. Crystal structure of Pseudomoans ?uorescens 4-hydroxyphenylpyruvate dioxygenase: an enzyme involved in the tyrosine degradation pathway. Structure. 1999;7(8):977–988. DOI:10.1016/S0969-2126(99)80124-5
  • Steinert M, Flugel M, Schuppler M, et al. The Lly protein is essential for p-hydroxyphenylpyruvate dioxygenase activity in Legionella pneumophila. FEMS Microbiol Lett. 2001;203(1):41–47. DOI:10.1111/j.1574-6968.2001.tb10818.x
  • Steinert M, Engelhard H, Flugel M, et al. The Lly protein protects Legionella pneumophila from light but does not directly infuence its intracellular survival in Hartmannella vermiformis. Appl Environ Microbiol. 1995;61(6):2428–2430. DOI:10.1128/aem.61.6.2428-2430.1995
  • Gutierrez West CK, Klein SL, Lovell CR. High frequency of virulence factor genes tdh, trh, and tlh in Vibrio parahaemolyticus strains isolated from a pristine estuary. Appl Environ Microbiol. 2013;79(7):2247–2252.
  • Liu Y, Sui M, Ji D, et al. Protection from UV irradiation by melanin of mosquitocidal activity of Bacillus thuringiensis var. israelensis. J Invertebr Pathol. 1993;62(2):131–136. DOI:10.1006/jipa.1993.1088
  • Levin TC, Goldspiel BP, Malik HS. Density-Dependent resistance protects Legionella pneumophila from its own antimicrobial metabolite, HGA. Elife. 2019;8:e46086.
  • Kimura T, Kobayashi K, O’-Toole G. Role of glutamate synthase in biofilm formation by Bacillus subtilis. J Bacteriol. 2020;202(14). e00120-20. DOI:10.1128/JB.00120-20.
  • Abu Khweek A, Amer AO. Factors mediating environmental biofilm formation by Legionella pneumophila. Front Cell Infect Microbiol. 2018;8:38.
  • Zeng Z, Cai X, Wang P, et al. Biofilm formation and heat stress induce pyomelanin production in deep-sea Pseudoalteromonas sp. SM9913. Front Microbiol. 2017;8:1822.
  • Whitham JM, Moon JW, Rodriguez M, et al. Clostridium thermocellum LL1210 pH homeostasis mechanisms informed by transcriptomics and metabolomics. Biotechnol Biofuels. 2018;11:98.
  • Merrell BR, Walker RI, Joseph SW. In vitro and in vivo pathologic effects of Vibrio parahaemolyticus on human epithelial cells. Can J Microbiol. 1984;30(3):381–388.
  • Ushijima B, Hase CC, DiRita VJ. Influence of chemotaxis and swimming patterns on the virulence of the coral pathogen Vibrio coralliilyticus. J Bacteriol. 2018;200(15). e00791-17. DOI:10.1128/JB.00791-17.
  • Romagni JG, Meazza G, Nanayakkara NP, et al. The phytotoxic lichen metabolite, usnic acid, is a potent inhibitor of plant p -hydroxyphenylpyruvate dioxygenase. FEBS Lett. 2000;480(2–3):301–305. DOI:10.1016/S0014-5793(00)01907-4
  • Shabir A, Seung YL, Raees K, et al. Identification of a gene involved in the negative regulation of pyomelanin production in Ralstonia solanacearum. J Microbiol Biotechnol. 2017;27(9):1692–1700. DOI:10.4014/jmb.1705.05049
  • Shan C, Lu Z, Li Z, et al. 4-Hydroxyphenylpyruvate dioxygenase promotes lung cancer growth via pentose phosphate pathway (PPP) flux mediated by LKB1-AMPK/HDAC10/G6PD axis. Cell Death Dis. 2019;10(7):525. DOI:10.1038/s41419-019-1756-1
  • Shimoji M, Figueroa RA, Neve E, et al. Molecular basis for the dual subcellular distribution of microsomal glutathione transferase 1. Biochim Biophys Acta Biomembr. 2017;1859(2):238–244. DOI:10.1016/j.bbamem.2016.11.014
  • Crespo M, Sole M. The use of juvenile Solea solea as sentinel in the marine platform of the Ebre Delta: in vitro interaction of emerging contaminants with the liver detoxification system. Environ Sci Pollut Res Int. 2016;23(19):19229–19236.
  • Liang W, Zhang W, Lv Z, et al. 4-Hydroxyphenylpyruvate dioxygenase from sea cucumber Apostichopus japonicus negatively regulates reactive oxygen species production. Fish Shellfish Immunol. 2020;101:261–268.