3,566
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

Extracellular trap can be trained as a memory response

, , , , , , ORCID Icon & ORCID Icon show all
Pages 471-482 | Received 14 Sep 2021, Accepted 22 Feb 2022, Published online: 07 Mar 2022

References

  • Doster RS, Rogers LM, Gaddy JA, et al. Macrophage extracellular traps: a scoping review. J Innate Immun. 2018;10(1):3–13.
  • Je S, Quan H, Yoon Y, et al. Mycobacterium massiliense induces macrophage extracellular traps with facilitating bacterial growth. PLoS One. 2016;11(5):e0155685.
  • Chen T, Wang Y, Nan Z, et al. Interaction between macrophage extracellular traps and colon cancer cells promotes colon cancer invasion and correlates with unfavorable prognosis. Front Immunol. 2021;12:779325.
  • Demers M, Krause DS, Schatzberg D, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A. 2012;109(32):13076–13081.
  • Wiersinga WJ, Leopold SJ, Cranendonk DR, et al. Host innate immune responses to sepsis. Virulence. 2014;5(1):36–44.
  • McDonald B, Urrutia R, Yipp BG, et al. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe. 2012;12(3):324–333.
  • Park SY, Shrestha S, Youn YJ, et al. Autophagy primes neutrophils for neutrophil extracellular trap formation during sepsis. Am J Respir Crit Care Med. 2017;196(5):577–589.
  • Wong SL, Demers M, Martinod K, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med. 2015;21(7):815–819.
  • Jin L, Liu Y, Jing C, et al. Neutrophil extracellular traps (NETs)-mediated killing of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) are impaired in patients with diabetes mellitus. Virulence. 2020;11(1):1122–1130.
  • Netea MG, Quintin J, van der Meer JW. Trained immunity: a memory for innate host defense. Cell Host Microbe. 2011;9(5):355–361.
  • Zubair K, You C, Kwon G, et al. Two faces of macrophages: training and tolerance. Biomedicines. 2021;9(11):1596.
  • Bowdish DM, Loffredo MS, Mukhopadhyay S, et al. Macrophage receptors implicated in the “adaptive” form of innate immunity. Microbes Infect. 2007;9(14–15):1680–1687.
  • Lu M, Yuan B, Yan X, et al. Clostridium perfringens-induced host-pathogen transcriptional changes in the small intestine of broiler chickens. Pathogens. 2021;10(12):1607.
  • Li J, Ma M, Sarker MR, et al. CodY is a global regulator of virulence-associated properties for Clostridium perfringens type D strain CN3718. Mbio. 2013;4(5): e00770-00713. DOI:10.1128/mBio.00770-13.
  • Romo-Barrera CM, Castrillon-Rivera LE, Palma-Ramos A, et al. Bacillus licheniformis and Bacillus subtilis, probiotics that induce the formation of macrophage extracellular traps. Microorganisms. 2021;9(10):2027.
  • Quintin J, Saeed S, Martens JHA, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe. 2012;12(2):223–232.
  • Wellington M, Dolan K, Krysan DJ. Live Candida albicans suppresses production of reactive oxygen species in phagocytes. Infect Immun. 2009;77(1):405–413.
  • Pan Y, Li J, Xia X, et al. Beta-Glucan-Coupled superparamagnetic iron oxide nanoparticles induce trained immunity to protect mice against sepsis. Theranostics. 2022;12(2):675–688.
  • Wang Y, Li M, Stadler S, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol. 2009;184(2):205–213.
  • Li P, Li M, Lindberg MR, et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010;207(9):1853–1862.
  • Walachowski S, Tabouret G, Foucras G. Triggering Dectin-1-pathway alone is not sufficient to induce cytokine production by murine macrophages. PLoS One. 2016;11(2):e0148464.
  • Liu Y, Wu Q, Wu X, et al. Structure, preparation, modification, and bioactivities of beta-Glucan and mannan from yeast cell wall: A review. Int J Biol Macromol. 2021;173:445–456.
  • Bono C, Guerrero P, Jordan-Pla A, et al. GM-CSF programs hematopoietic stem and progenitor cells during Candida albicans vaccination for protection against reinfection. Front Immunol. 2021;12:790309.
  • Byrne KA, Loving CL, McGill JL. Innate immunomodulation in food animals: evidence for trained immunity? Front Immunol. 2020;11:1099.
  • Krishnan R, Jang YS, Oh MJ. Beta glucan induced immune priming protects against nervous necrosis virus infection in sevenband grouper. Fish Shellfish Immunol. 2022;121:163–171.
  • Paris S, Chapat L, Pasin M, et al. Beta-Glucan-Induced trained immunity in dogs. Front Immunol. 2020;11:566893.
  • Pieper J, Locke M, Ruzaike G, et al. In vitro and in vivo generation of heterophil extracellular traps after Salmonella exposure. Vet Immunol Immunopathol. 2017;188:1–11.
  • Verwoolde MB, van den Biggelaar R, van Baal J, et al. Training of primary chicken monocytes results in enhanced pro-inflammatory responses. Vet Sci. 2020;7(3). DOI:10.3390/vetsci7030115
  • Cheng SC, Quintin J, Cramer RA, et al. mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014;345(6204):1250684.
  • Mehdizadeh Gohari I, An M, Li J, et al. Pathogenicity and virulence of Clostridium perfringens. Virulence. 2021;12(1):723–753.
  • Kiu R, Hall LJ. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg Microbes Infect. 2018;7(1):141.
  • Santecchia I, Vernel-Pauillac F, Rasid O, et al. Innate immune memory through TLR2 and NOD2 contributes to the control of Leptospira interrogans infection. PLoS Pathog. 2019;15(5):e1007811.
  • Dominguez-Diaz C, Varela-Trinidad GU, Munoz-Sanchez G, et al. To trap a pathogen: neutrophil extracellular traps and their role in Mucosal Epithelial and skin diseases. Cells. 2021;10(6):1469.
  • Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–1535.
  • Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18(2):134–147.
  • Mollerherm H, von Kockritz-Blickwede M, Branitzki-Heinemann K. Antimicrobial activity of mast cells: role and relevance of extracellular DNA traps. Front Immunol. 2016;7:265.
  • Daniel C, Leppkes M, Munoz LE, et al. Extracellular DNA traps in inflammation, injury and healing. Nat Rev Nephrol. 2019;15(9):559–575.
  • Pertiwi KR, de Boer OJ, Mackaaij C, et al. Extracellular traps derived from macrophages, mast cells, eosinophils and neutrophils are generated in a time-dependent manner during atherothrombosis. J Pathol. 2019;247(4):505–512.
  • Borregaard N. Neutrophils, from marrow to microbes. Immunity. 2010;33(5):657–670.
  • Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol. 2012;189(6):2689–2695.
  • Vitkov L, Munoz LE, Knopf J, et al. Connection between periodontitis-induced low-grade endotoxemia and systemic diseases: neutrophils as protagonists and targets. Int J Mol Sci. 2021;22(9):4647.
  • Petit J, Embregts CWE, Forlenza M, et al. Evidence of trained immunity in a fish: conserved features in carp macrophages. J Immunol. 2019;203(1):216–224.
  • Pan W, Hao S, Zheng M, et al. Oat-Derived beta-Glucans induced trained immunity through metabolic reprogramming. Inflammation. 2020;43(4):1323–1336.
  • Moerings BGJ, de Graaff P, Furber M, et al. Continuous exposure to non-soluble beta-Glucans induces trained immunity in M-CSF-differentiated macrophages. Front Immunol. 2021;12:672796.
  • Netea MG, Dominguez-Andres J, Barreiro LB, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol. 2020;20(6):375–388.