2,404
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

Nepetin reduces virulence factors expression by targeting ClpP against MRSA-induced pneumonia infection

, , , , , , , , , , , ORCID Icon & show all
Pages 578-588 | Received 26 Sep 2021, Accepted 06 Mar 2022, Published online: 01 Apr 2022

References

  • Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998;339(8):520–532.
  • Jain S, Williams DJ, Arnold SR, et al. Community-Acquired pneumonia requiring hospitalization among U.S. children. N Engl J Med. 2015;372(9):835–845. DOI:10.1056/NEJMoa1405870
  • Laxminarayan R, Duse A, Wattal C, et al. Antibiotic resistance—the need for global solutions. Lancet Infect Dis. 2013;13(12):1057–1098. DOI:10.1016/S1473-3099(13)70318-9
  • Powers ME, Kim HK, Wang Y, et al. ADAM10 mediates vascular injury induced by Staphylococcus aureus α-hemolysin. J Infect Dis. 2012;206(3):352–356.
  • Spaan AN, van Strijp JAG, Torres VJ. Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors. Nature Rev Microbiol. 2017;15(7):435–447.
  • Salam AM, Quave CL. Targeting virulence in Staphylococcus aureus by chemical inhibition of the accessory gene regulator system in vivo. mSphere. 2018;3(1):3.
  • Cheng AG, Kim HK, Burts ML, et al. Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues. Faseb J. 2009;23(10):3393–3404.
  • Gao P, Ho PL, Yan B, et al. Suppression of Staphylococcus aureus virulence by a small-molecule compound. Proc Natl Acad Sci U S a. 2018;115(31):8003–8008.
  • Gao J, Stewart GC. Regulatory elements of the Staphylococcus aureus protein A (SpA) promoter. J Bacteriol. 2004;186(12):3738–3748.
  • Frees D, Qazi SN, Hill PJ, et al. Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol Microbiol. 2003;48(6):1565–1578.
  • Böttcher T, Sieber SA. β-Lactones as specific inhibitors of ClpP attenuate the production of extracellular virulence factors of Staphylococcus aureus. J Am Chem Soc. 2008;130(44):14400–14401.
  • Michel A, Agerer F, Hauck CR, et al. Global regulatory impact of ClpP protease of Staphylococcus aureus on regulons involved in virulence, oxidative stress response, autolysis, and DNA repair. J Bacteriol. 2006;188(16):5783–5796. DOI:10.1128/JB.00074-06
  • Silva LN, Zimmer KR, Macedo AJ, et al. Plant natural products targeting bacterial virulence factors. Chem Rev. 2016;116(16):9162–9236.
  • Thaler JS, Fidantsef AL, Duffey SS, et al. Trade-Offs in plant defense against pathogens and herbivores: a field demonstration of chemical elicitors of induced resistance. J Chem Ecol. 1999;25(7):1597–1609.
  • Qiu J, Jiang Y, Xia L, et al. Subinhibitory concentrations of licochalcone a decrease alpha-toxin production in both methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Lett Appl Microbiol. 2010;50(2):223–229. DOI:10.1111/j.1472-765X.2009.02783.x
  • Qiu J, Li H, Meng H, et al. Impact of luteolin on the production of alpha-toxin by Staphylococcus aureus. Lett Appl Microbiol. 2011;53(2):238–243. DOI:10.1111/j.1472-765X.2011.03098.x
  • Böttcher T, Sieber SA. β-Lactones as privileged structures for the active-site labeling of versatile bacterial enzyme classes. Angew Chem (Int Ed in English). 2008;47(24):4600–4603.
  • Hackl MW, Lakemeyer M, Dahmen M, et al. Phenyl esters are potent inhibitors of caseinolytic protease P and reveal a stereogenic switch for deoligomerization. J Am Chem Soc. 2015;137(26):8475–8483. DOI:10.1021/jacs.5b03084
  • Xu Z, Shen ZH, Wu B, et al. Small molecule natural compound targets the NF-κB signaling and ameliorates the development of osteoarthritis. J Cell Physiol. 2021;236(11):7298–7307.
  • Liu K, Park C, Chen H, et al. Eupafolin suppresses prostate cancer by targeting phosphatidylinositol 3-kinase-mediated Akt signaling. Mol Carcinog. 2015;54(9):751–760. DOI:10.1002/mc.22139
  • Jing S, Wang L, Wang T, et al. Myricetin protects mice against MRSA-related lethal pneumonia by targeting ClpP. Biochem Pharmacol. 2021;192:114753. DOI:10.1016/j.bcp.2021.114753
  • Geiger SR, Böttcher T, Sieber SA, et al. A conformational switch underlies ClpP protease function. Angewandte Chemie. 2011;50(25):5749–5752.
  • Niesen FH, Berglund H, Vedadi M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc. 2007;2(9):2212–2221.
  • Trott O, Olson AJ. AutoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–461.
  • Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDocktools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–2791. DOI:10.1002/jcc.21256
  • Niu X, Qiu J, Wang X, et al. Molecular insight into the inhibition mechanism of cyrtominetin to α-hemolysin by molecular dynamics simulation. Eur J Med Chem. 2013;62:320–328.
  • Mu D, Luan Y, Wang L, et al. The combination of salvianolic acid a with latamoxef completely protects mice against lethal pneumonia caused by methicillin-resistant Staphylococcus aureus. Emerg Microbes Infect. 2020;9(1):169–179. DOI:10.1080/22221751.2020.1711817
  • Rodrigues T, Reker D, Schneider P, et al. Counting on natural products for drug design. Nat Chem. 2016;8(6):531–541.
  • Martinez Molina D, Jafari R, Ignatushchenko M, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science. 2013;341(6141):84–87. DOI:10.1126/science.1233606
  • Hopkins AL, Groom CR. The druggable genome. Nat Rev Drug Discov. 2002;1(9):727–730.
  • Kang L, Li H, Jiang H, et al. An improved adaptive genetic algorithm for protein–ligand docking. J Comput Aided Mol Des. 2009;23(1):1–12.
  • Kebaier C, Chamberland RR, Allen IC, et al. Staphylococcus aureus α-hemolysin mediates virulence in a murine model of severe pneumonia through activation of the NLRP3 inflammasome. J Infect Dis. 2012;205(5):807–817. DOI:10.1093/infdis/jir846
  • Frees D, Gerth U, Ingmer H. Clp chaperones and proteases are central in stress survival, virulence and antibiotic resistance of Staphylococcus aureus. Int J Med Microbiol. 2014;304(2):142–149.
  • Jones RN. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin Infect Dis. 2010;51(Suppl 1):S81–7.
  • Dickey SW, Cheung GYC, Otto M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov. 2017;16(7):457–471.
  • Sun F, Zhou L, Zhao BC, et al. Targeting MgrA-mediated virulence regulation in Staphylococcus aureus. Chem Biol. 2011;18(8):1032–1041. DOI:10.1016/j.chembiol.2011.05.014
  • Thoendel M, Kavanaugh JS, Flack CE, et al. Peptide signaling in the staphylococci. Chem Rev. 2011;111(1):117–151.
  • Seilie ES, Bubeck Wardenburg J. Staphylococcus aureus pore-forming toxins: the interface of pathogen and host complexity. Semin Cell Dev Biol. 2017;72:101–116.
  • Tran VG, Venkatasubramaniam A, Adhikari RP, et al. Efficacy of active immunization with attenuated α-hemolysin and panton-valentine leukocidin in a rabbit model of Staphylococcus aureus necrotizing pneumonia. J Infect Dis. 2020;221(2):267–275. DOI:10.1093/infdis/jiz437
  • Kim G-L, Akoolo L, Parker D. The ClpXP protease contributes to Staphylococcus aureus pneumonia. J Infect Dis. 2020;222(8):1400–1404.