1,297
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

An iron-chelating sulfonamide identified from Drosophila-based screening for antipathogenic discovery

, , , & ORCID Icon
Pages 833-843 | Received 19 Dec 2021, Accepted 18 Apr 2022, Published online: 06 May 2022

References

  • Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015;109(7):309–318.
  • Cabot G, Zamorano L, Moyà B, et al. Evolution of Pseudomonas aeruginosa antimicrobial resistance and fitness under low and high mutation rates. Antimicrob Agents Chemother. 2016;60(3):1767–1778. DOI:10.1128/AAC.02676-15
  • Mulani MS, Kamble EE, Kumkar SN, et al. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front Microbiol. 2019;10:539.
  • Kirienko DR, Kang D, Kirienko NV. Novel pyoverdine inhibitors mitigate Pseudomonas aeruginosa pathogenesis. Front Microbiol. 2019;9:3317.
  • Rasko DA, Sperandio V. Anti-Virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov. 2010;9(2):117–128.
  • Ofek I, Hasty DL, Doyle RJ. Bacterial adhesion to animal cells and tissues. Vol. 1725. Washington, DC: ASM. press;2003. DOI:10.1128/9781555817800
  • Deep A, Chaudhary U, Gupta V. Quorum sensing and bacterial pathogenicity: from molecules to disease. J Lab Physicians. 2011;3(01):004–011.
  • Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med. 2012;2(11):a012427.
  • Oh HY, Jalde SS, Chung IY, et al. An antipathogenic compound that targets the OxyR peroxide sensor in Pseudomonas aeruginosa. J Med Microbiol. 2021;70(4):001341. DOI:10.1099/jmm.0.001341
  • Chung IY, Jang HJ, Bae HW, et al. A phage protein that inhibits the bacterial ATPase required for type IV pilus assembly. Proc Natl Acad Sci USA. 2014;111(31):11503–11508. DOI:10.1073/pnas.1403537111
  • Bo K, Jang HJ, Chung IY, et al. Nitrate respiration promotes polymyxin B resistance in Pseudomonas aeruginosa. Antioxid Redox Signal. 2021;34(6):442–451. DOI:10.1089/ars.2019.7924
  • O’-Callaghan D, Vergunst A. Non-Mammalian animal models to study infectious disease: worms or fly fishing? Curr Opin Microbiol. 2010;13(1):79–85.
  • Lorenz A, Pawar V, Häussler S, et al. Insights into host–pathogen interactions from state‐of‐the‐art animal models of respiratory Pseudomonas aeruginosa infections. FEBS Lett. 2016;590(21):3941–3959. DOI:10.1002/1873-3468.12454
  • Moy TI, Conery AL, Larkins-Ford J, et al. High-Throughput screen for novel antimicrobials using a whole animal infection model. ACS Chem Biol. 2009;4(7):527–533. DOI:10.1021/cb900084v
  • Tzelepis I, Kapsetaki SE, Panayidou S, et al. Drosophila melanogaster: a first step and a stepping-stone to anti-infectives. Curr Opin Pharmacol. 2013;13(5):763–768. DOI:10.1016/j.coph.2013.08.003
  • Pukkila-Worley R, Feinbaum R, Kirienko NV, et al. Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection. PLoS Genet. 2012;8(6):e1002733. DOI:10.1371/journal.pgen.1002733
  • Dach K, Yaghoobi B, Schmuck MR, et al. Teratological and behavioral screening of the national toxicology program 91-compound library in zebrafish (Danio rerio). Toxicol Sci. 2019;167(1):77–91. DOI:10.1093/toxsci/kfy266
  • Jang HJ, Chung IY, Lim C, et al. Redirecting an anticancer to an antibacterial hit against methicillin-resistant Staphylococcus aureus. Front Microbiol. 2019;10:350.
  • Lee YJ, Jang HJ, Chung IY, et al. Drosophila melanogaster as a polymicrobial infection model for Pseudomonas aeruginosa and Staphylococcus aureus. J Microbiol. 2018;56(8):534–541. DOI:10.1007/s12275-018-8331-9
  • Kim SH, Park SY, Heo YJ, et al. Drosophila melanogaster-based screening for multihost virulence factors of Pseudomonas aeruginosa PA14 and identification of a virulence-attenuating factor, HudA. Infect Immun. 2008;76(9):4152–4162. DOI:10.1128/IAI.01637-07
  • Burke RM, Upton ME, McLoughlin AJ. Influence of pigment production on resistance to ultraviolet irradiation in Pseudomonas aeruginosa ATCC 10145. Irish J Food Sci Technol. 1990;14(1):51–60.
  • Meyer JM, Abdallah MA. The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. Microbiology. 1978;107(2):319–328.
  • Imperi F, Tiburzi F, Visca P. Molecular basis of pyoverdine siderophore recycling in Pseudomonas aeruginosa. Proc Natl Acad Sci, USA. 2009;106(48):20440–20445.
  • Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):1–16. DOI:10.1186/gb-2004-5-10-r80
  • Chan SWL, Henderson IR, Jacobsen SE. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet. 2005;6(5):351–360.
  • Kang SM, Nam KY, Jung SY, et al. Inhibition of cancer cell invasion by new ((3, 4-dihydroxy benzylidene) hydrazinyl) pyridine-3-sulfonamide analogs. Bioorg Med Chem Lett. 2016;26(4):1322–1328. DOI:10.1016/j.bmcl.2015.12.093
  • Zhang Q, Jin B, Wang X, et al. The mono (catecholamine) derivatives as iron chelators: synthesis, solution thermodynamic stability and antioxidant properties research. R Soc Open Sci. 2018;5(6):171492. DOI:10.1098/rsos.171492
  • Wang Y, Newman DK. Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen. Environ Sci Technol. 2008;42(7):2380–2386.
  • Pierson LS, Pierson EA. Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol. 2010;86(6):1659–1670.
  • Rodríguez-Rojas A, Makarova O, Müller U, et al. Cationic peptides facilitate iron-induced mutagenesis in bacteria. PLoS Genet. 2015;11(10):e1005546. DOI:10.1371/journal.pgen.1005546
  • Wang R, An L, He J, et al. A class of water-soluble Fe (III) coordination complexes as T1-weighted MRI contrast agents. J Mater Chem B. 2021;9(7):1787–1791. DOI:10.1039/d0tb02716b
  • Symeonidis AS. The role of iron and iron chelators in zygomycosis. Clin Microbiol Infect. 2009;15:26–32.
  • Kroeger T, Frieg B, Zhang T, et al. EDTA aggregates induce SYPRO orange-based fluorescence in thermal shift assay. PLoS One. 2017;12(5):e0177024. DOI:10.1371/journal.pone.0177024
  • Moy TI, Ball AR, Anklesaria Z, et al. Identification of novel antimicrobials using a live-animal infection model. Proc Natl Acad Sci, USA. 2006;103(27):10414–10419. DOI:10.1073/pnas.0604055103
  • Hoffmann JA, Reichhart JM. Drosophila innate immunity: an evolutionary perspective. Nat Immunol. 2002;3(2):121–126.
  • Glavis-Bloom J, Muhammed M, Mylonakis E. Of model hosts and man: using Caenorhabditis elegans, Drosophila melanogaster and Galleria mellonella as model hosts for infectious disease research. Adv Exp Med Biol. 2012;11–17. DOI:10.1007/978-1-4419-5638-5_2
  • Sibley CD, Duan K, Fischer C, et al. Discerning the complexity of community interactions using a Drosophila model of polymicrobial infections. PLoS Pathog. 2008;4(10):e1000184. DOI:10.1371/journal.ppat.1000184
  • Su CY, Menuz K, Carlson JR. Olfactory perception: receptors, cells, and circuits. Cell. 2009;139(1):45–59.
  • Bakkeren E, Diard M, Hardt WD. Evolutionary causes and consequences of bacterial antibiotic persistence. Nat Rev Microbiol. 2020;18(9):479–490.
  • Ruff WE, Greiling TM, Kriegel MA. Host–microbiota interactions in immune-mediated diseases. Nat Rev Microbiol. 2020;18(9):521–538.