1,832
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Coinfection in the host can result in functional complementation between live vaccines and virulent virus

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 980-989 | Received 25 Mar 2022, Accepted 23 May 2022, Published online: 05 Jun 2022

References

  • Lee SW, Markham PF, Coppo MJ, et al. Attenuated vaccines can recombine to form virulent field viruses [Research Support, Non-U.S. Gov’t]. Science. 2012;337(6091):188.
  • Zhang Y, Lan X, Wang Y, et al. Emerging natural recombinant Marek’s disease virus between vaccine and virulence strains and their pathogenicity. Transbound Emerg Dis. 2022. DOI:10.1111/tbed.14506.
  • Mahy BWJ. A dictionary of virology. 3rd ed. San Diego, CA: Academic Press; 2001.
  • Froissart R, Wilke CO, Montville R, et al. Co-Infection weakens selection against epistatic mutations in RNA viruses. Genetics. 2004;168(1):9–19. DOI:10.1534/genetics.104.030205
  • Hammond J, Reinsel M, Grinstead S, et al. A Mixed Infection of Helenium Virus S with Two Distinct Isolates of Butterbur Mosaic Virus, One of Which Has a Major Deletion in an Essential Gene. Front Microbiol. 2020;11:612936.
  • Cockley KD, Rapp F. Complementation for replication by unrelated animal viruses containing DNA genomes. Microbiol Rev. 1987 Dec;51(4):431–438.
  • Speck PG, Efstathiou S, Minson AC. In vivo complementation studies of a glycoprotein H-deleted herpes simplex virus-based vector. J Gen Virol. 1996 Oct;77(Pt 10):2563–2568.
  • Jarosinski KW, Margulis NG, Kamil JP, et al. Horizontal transmission of Marek’s disease virus requires US2, the UL13 protein kinase, and gC. J Virol. 2007;81(19):10575–10587. DOI:10.1128/JVI.01065-07
  • Jarosinski KW, Osterrieder N. Further analysis of Marek’s disease virus horizontal transmission confirms that U(L)44 (gC) and U(L)13 protein kinase activity are essential, while U(S)2 is nonessential. J Virol. 2010 Aug;84(15):7911–7916.
  • Osterrieder N, Kamil JP, Schumacher D, et al. Marek’s disease virus: from miasma to model. Nature Rev Microbiol. 2006;4(4):283–294. DOI:10.1038/nrmicro1382
  • Arvin AM. Varicella-Zoster virus. Clin Microbiol Rev. 1996 Jul;9(3):361–381.
  • Baaten BJ, Staines KA, Smith LP, et al. Early replication in pulmonary B cells after infection with Marek’s disease herpesvirus by the respiratory route. Viral Immunol. 2009;22(6):431–444. DOI:10.1089/vim.2009.0047
  • Morrow C, Fehler F. Marek’s disease. In: Davison F and V Nair, editors. Marek’s Disease: Institute for Animal Health. UK: Compton Laboratory; 2004. pp. 49–61.
  • Bublot M, Sharma J. Vaccination against Marek’s disease. In: Davison F and V Nair, editors. Marek’s disease: an evolving problem. Biology of Animal Infections. London, UK: Elsevier Academic Press; 2004. pp. 168–185.
  • Witter RL. The changing landscape of Marek’s disease. Avian Pathol. 1998 Apr;27:S46–S53.
  • Romanutti C, Keller L, Zanetti FA. Current status of virus-vectored vaccines against pathogens that affect poultry. Vaccine. 2020 Oct 21;38(45):6990–7001. DOI:10.1016/j.vaccine.2020.09.013
  • Vega-Rodriguez W, Xu H, Ponnuraj N, et al. The requirement of glycoprotein C (gC) for interindividual spread is a conserved function of gC for avian herpesviruses. Sci Rep. 2021 Apr 8 11;(1)7753. DOI:10.1038/s41598-021-87400-x
  • Krieter A, Xu H, Akbar H, et al. The conserved Herpesviridae protein kinase (CHPK) of Gallid alphaherpesvirus 3 (GaHV3) is required for horizontal spread and natural Infection in chickens. Viruses. 2022 Mar 12;14(3). DOI:10.3390/v14030586.
  • Jarosinski KW. Dual infection and superinfection inhibition of epithelial skin cells by two alphaherpesviruses co-occur in the natural host. PLoS One. 2012;7(5):e37428.
  • Vega-Rodriguez W, Ponnuraj N, Jarosinski KW. Marek’s disease alphaherpesvirus (MDV) RLORF4 is not required for expression of glycoprotein C and interindividual spread. Virology. 2019 Aug;534:108–113.
  • Vega-Rodriguez W, Ponnuraj N, Garcia M, et al. The requirement of glycoprotein C for interindividual spread is functionally conserved within the alphaherpesvirus genus (Mardivirus), but not the host (Gallid). Viruses. 2021 Jul 21 13;(8)1419. DOI:10.3390/v13081419
  • Schat KA, Sellers HS. Cell-Culture methods. In: Dufour-Zavala L; D Swayne and J Glisson, et al., editors. A laboratory manual for the identification and characterization of avian pathogens. 5th ed. Jacksonville, FL:American Association of Avian Pathologists; 2008. pp. 195–203.
  • Jarosinski KW, Osterrieder N. Marek’s disease virus expresses multiple UL44 (gC) variants through mRNA splicing that are all required for efficient horizontal transmission. J Virol. 2012 Aug;86(15):7896–7906.
  • Krieter A, Ponnuraj N, Jarosinski KW. Expression of the conserved herpesvirus protein kinase (CHPK) of Marek’s disease alphaherpesvirus in the skin reveals a mechanistic importance for CHPK during interindividual spread in chickens. J Virol. 2020;94(5):e01522.
  • Calnek BW, Shek WR, Schat KA. Spontaneous and induced herpesvirus genome expression in Marek’s disease tumor cell lines. Infect Immun. 1981 Nov;34(2):483–491.
  • Jarosinski KW, Arndt S, Kaufer BB, et al. Fluorescently tagged pUL47 of Marek’s disease virus reveals differential tissue expression of the tegument protein in vivo. J Virol. 2012;86(5):2428–2436. DOI:10.1128/JVI.06719-11
  • Christen L, Seto J, Niles EG. Superinfection exclusion of vaccinia virus in virus-infected cell cultures. Virology. 1990 Jan;174(1):35–42.
  • Karpf AR, Lenches E, Strauss EG, et al. Superinfection exclusion of alphaviruses in three mosquito cell lines persistently infected with Sindbis virus. J Virol. 1997;71(9):7119–7123. DOI:10.1128/jvi.71.9.7119-7123.1997
  • Lee YM, Tscherne DM, Yun SI, et al. Dual mechanisms of pestiviral superinfection exclusion at entry and RNA replication. J Virol. 2005;79(6):3231–3242. DOI:10.1128/JVI.79.6.3231-3242.2005
  • Simon KO, Cardamone JJ Jr., Whitaker-Dowling PA, et al. Cellular mechanisms in the superinfection exclusion of vesicular stomatitis virus. Virology. 1990;177(1):375–379. DOI:10.1016/0042-6822(90)90494-C
  • Cockley KD, Shiraki K, Rapp F. A human cytomegalovirus function inhibits replication of herpes simplex virus. J Virol. 1988 Jan;62(1):188–195.
  • Kumar N, Sharma S, Barua S, et al. Virological and Immunological Outcomes of Coinfections. Clin Microbiol Rev. 2018;31(4). DOI:10.1128/CMR.00111-17.
  • Yunis R, Jarosinski KW, Schat KA. Association between rate of viral genome replication and virulence of Marek’s disease herpesvirus strains. Virology. 2004;328(1):142–150.
  • Knipe DM, Howley PM. Fields virology. 6th ed. Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2013.