1,759
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Multiple HA substitutions in highly pathogenic avian influenza H5Nx viruses contributed to the change in the NA subtype preference

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 990-1004 | Received 28 Mar 2022, Accepted 23 May 2022, Published online: 05 Jun 2022

References

  • Wu WL, Chen Y, Wang P, et al. Antigenic profile of avian H5N1 viruses in Asia from 2002 to 2007. J Virol. 2008;82(4):1798–1807. DOI:10.1128/JVI.02256-07
  • Dhingra MS, Artois J, Robinson TP, et al. Global mapping of highly pathogenic avian influenza H5N1 and H5Nx clade 2.3.4.4 viruses with spatial cross-validation. Elife. 2016;5: Epub 2016/11/26. DOI:10.7554/eLife.19571.
  • Duan L, Campitelli L, Fan XH, et al. Characterization of low-pathogenic H5 subtype influenza viruses from Eurasia: implications for the origin of highly pathogenic H5N1 viruses. J Virol. 2007;81(14):7529–7539. Epub 2007/05/18. doi:10.1128/JVI.00327-07.
  • Lee DH, Bahl J, Torchetti MK, et al. Highly pathogenic avian influenza viruses and generation of novel reassortants, United States, 2014-2015. Emerg Infect Dis. 2016;22(7):1283–1285. Epub 2016/06/18.
  • Bender C, Hall H, Huang J, et al. Characterization of the surface proteins of influenza a (H5N1) viruses isolated from humans in 1997-1998. Virology. 1999;254(1):115–123. Epub 1999/02/03.
  • Hill NJ, Hussein IT, Davis KR, et al. Reassortment of influenza a viruses in wild birds in Alaska before H5 clade 2.3.4.4 outbreaks. Emerg Infect Dis. 2017;23(4):654–657. Epub 2017/03/23.
  • Shao W, Li X, Goraya MU, et al. Evolution of influenza a virus by mutation and re-assortment. Int J Mol Sci. 2017;18(8):1650. Epub 2017/08/08. doi:10.3390/ijms18081650.
  • Yang H, Carney PJ, Mishin VP, et al. Molecular characterizations of surface proteins hemagglutinin and neuraminidase from recent H5Nx avian influenza viruses. J Virol. 2016;90(12):5770–5784. Epub 2016/04/08. doi:10.1128/JVI.00180-16.
  • Gu M, Zhao G, Zhao K, et al. Novel variants of clade 2.3.4 highly pathogenic avian influenza A(H5N1) viruses, China. Emerg Infect Dis. 2013;19(12):2021–2024. Epub 2013/11/28. doi:10.3201/eid1912.130340.
  • Neumann G, Chen H, Gao GF, et al. H5N1 influenza viruses: outbreaks and biological properties. Cell Res. 2010;20(1):51–61. Epub 2009/11/04. doi:10.1038/cr.2009.124.
  • . H5N1 Evolution Working Group WHO/OIE/FAO. Continuing progress towards a unified nomenclature for the highly pathogenic H5N1 avian influenza viruses: divergence of clade 2.2 viruses. Influenza Other Respir Viruses. 2009;3(2):59–62. Epub 2009/06/06.
  • Liu CG, Liu M, Liu F, et al. Emerging multiple reassortant H5N5 avian influenza viruses in ducks, China, 2008. Vet Microbiol. 2013;167(3–4):296–306. Epub 2013/10/02.
  • Zhou LC, Liu J, Pei EL, et al. Novel avian influenza A(H5N8) viruses in migratory birds, China, 2013-2014. Emerg Infect Dis. 2016;22(6):1121–1123. Epub 2016/05/19.
  • Zhao G, Gu X, Lu X, et al. Novel reassortant highly pathogenic H5N2 avian influenza viruses in poultry in China. PLoS One. 2012;7(9):e46183. Epub 2012/10/11. doi:10.1371/journal.pone.0046183.
  • H5N1 Evolution Working Group WHO/OIE/FAO. Evolution of the influenza A(H5) haemagglutinin: WHO/OIE/FAO H5 working group reports a new clade designated 2.3.4.4. 2015 [Updated 2015 Jan 12]. Available from: https://www.who.int/influenza/gisrs_laboratory/h5_nomenclature_clade2344/en/
  • . Evolution Working Group WHO/OIE/FAO. Continued evolution of highly pathogenic avian influenza a (H5N1): updated nomenclature. Influenza Other Respi Viruses. 2011;6(1):1–5. DOI:10.1111/j.1750-2659.2011.00298.x.
  • . Evolution Working Group WHO/OIE/FAO. Revised and updated nomenclature for highly pathogenic avian influenza a (H5N1) viruses. Influenza Other Respir Viruses. 2014;8(3):384–388. DOI:10.1111/irv.12230.
  • Antigua KJC, Choi WS, Baek YH, et al. The emergence and decennary distribution of clade 2.3.4.4 HPAI H5Nx. Microorganisms. 2019;7(6):156. Epub 2019/05/31. doi:10.3390/microorganisms7060156.
  • Whitley R.J, Richman DD, Hayden, F.J, Hayden, F.G, Palese, P. 2016.Influenza virus.Clinical virology. https://doi.org/10.1128/9781555819439.ch43
  • Lbn GA, Le Briand N, Lina B, et al. Functional balance between neuraminidase and haemagglutinin in influenza viruses. Clin Microbiol Infect. 2016;22(12):975–983.
  • Cheung PPH, Watson SJ, Choy K-T, et al. Hui-Ling generation and characterization of influenza a viruses with altered polymerase fidelity. Nat Commun. 2014;5:4794.
  • Kaverin NV, Rudneva IA, Govorkova EA, et al. Epitope mapping of the hemagglutinin molecule of a highly pathogenic H5N1 influenza virus by using monoclonal antibodies. J Virol. 2007;81(23):12911–12917. DOI:10.1128/JVI.01522-07
  • Kaverin NV, Rudneva IA, Ilyushina NA, et al. Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. J Gen Virol. 2002;83(10):2497–2505. DOI:10.1099/0022-1317-83-10-2497
  • Li J, Gu M, Liu K, et al. Amino acid substitutions in antigenic region B of hemagglutinin play a critical role in the antigenic drift of subclade 2.3.4.4 highly pathogenic H5NX influenza viruses. Transbound Emerg Dis. 2020;67(1):263–275. DOI:10.1111/tbed.13347
  • de Vries E, Guo H, Dai M, et al. Rapid emergence of highly pathogenic avian influenza subtypes from a subtype H5N1 hemagglutinin variant. Emerg Infect Dis. 2015;21(5): 842–846. Epub 2015/04/22.
  • Chen LM, Blixt O, Stevens J, et al. In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity. Virology. 2012;422(1):105–113. Epub 2011/11/08.
  • Yamada S, Suzuki Y, Suzuki T, et al. Haemagglutinin mutations responsible for the binding of H5N1 influenza a viruses to human-type receptors. Nature. 2006;444(7117):378–382. Epub 2006/11/17. doi:10.1038/nature05264.
  • Choi W-S, Jeong JH, Lloren KKS, et al. Development of a rapid, simple and efficient one-pot cloning method for a reverse genetics system of broad subtypes of influenza a virus. Sci Rep. 2019;9(1):8318.
  • Hoffmann E, Neumann G, Kawaoka Y, et al. A DNA transfection system for generation of influenza a virus from eight plasmids. Proc Natl Acad Sci USA. 2000;97(11):6108–6113.
  • Matrosovich MN, Gambaryan AS Solid-Phase assays of receptor-binding specificity. Methods in Molecular Biology (Clifton, NJ). 2012;865:71–94. Epub 2012/04/25.
  • Marathe BM, Lévêque V, Klumpp K, et al. Determination of neuraminidase kinetic constants using whole influenza virus preparations and correction for spectroscopic interference by a fluorogenic substrate. PLoS One. 2013;8(8):e71401.
  • Hirst GK. The quantitative determination of influenza virus and antibodies by means of red cell agglutination. J Exp Med. 1942;75(1):49–64. Epub 1942/01/01. doi:10.1084/jem.75.1.49.
  • Zacour M, Ward BJ, Brewer A, et al. Standardization of hemagglutination inhibition assay for influenza serology allows for high reproducibility between laboratories. Clin Vaccine Immunol. 2016;23(3):236–242. Epub 2016/01/29. doi:10.1128/CVI.00613-15.
  • Jeong JH, Kim EH, Lloren KKS, et al. Preclinical evaluation of the efficacy of an H5N8 vaccine candidate (IDCDC-RG43A) in mouse and ferret models for pandemic preparedness. Vaccine. 2019;37(3):484–493. Epub 2018/12/07.
  • Cai Z, Zhang T, Wan X-F. A computational framework for influenza antigenic cartography. PLoS Comput Biol. 2010;6(10):e1000949.
  • Team; RDC. R: a language and environment for statistical computing. 3.5.3 (2019-03-11) ed. Vienna (Austria): R Foundation for Statistical Computing; 2010.
  • Xiong X, Coombs PJ, Martin SR, et al. Receptor binding by a ferret-transmissible H5 avian influenza virus. Nature. 2013;497(7449):392–396. DOI:10.1038/nature12144
  • Streltsov VA, Schmidt PM, McKimm-Breschkin JL. Structure of an influenza a virus N9 neuraminidase with a tetrabrachion-domain stalk. Acta Crystallogr, Sect F: Struct Biol Cryst Commun. 2019;75(Pt 2): 89–97. Epub 2019/02/05.
  • Pierce BG, Wiehe K, Hwang H, et al. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics (Oxford, England). 2014;30(12):1771–1773. Epub 2014/02/18.
  • Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296–W303. DOI:10.1093/nar/gky427
  • Guo H, de Vries E, McBride R, et al. Highly pathogenic influenza a (H5Nx) viruses with altered H5 receptor-binding specificity. Emerg Infect Dis. 2017;23(2):220–231. Epub 2016/11/22. doi:10.3201/eid2302.161072.
  • Gao R, Gu M, Liu K, et al. T160A mutation-induced deglycosylation at site 158 in hemagglutinin is a critical determinant of the dual receptor binding properties of clade 2.3.4.4 H5NX subtype avian influenza viruses. Vet Microbiol. Epub 2018/04/05 2018;217:158–166. doi: 10.1016/j.vetmic.2018.03.018
  • Gambaryan A, Tuzikov A, Pazynina G, et al. Evolution of the receptor binding phenotype of influenza a (H5) viruses. Virology. 2006;344(2):432–438. Epub 2005/10/18. doi:10.1016/j.virol.2005.08.035.
  • Cai Z, Zhang T, Wan XF. Concepts and applications for influenza antigenic cartography. Influenza Other Respir Viruses. 2011;5(Suppl 1): 204–207. Epub 2011/07/19.
  • Cai Z, Zhang T, Wan XF. Antigenic distance measurements for seasonal influenza vaccine selection. Vaccine. 2012;30(2): 448–453. Epub 2011/11/09.
  • Claes F, Morzaria SP, Donis RO. Emergence and dissemination of clade 2.3.4.4 H5Nx influenza viruses-how is the asian HPAI H5 lineage maintained. Curr Opin Virol. 2016;16: 158–163. Epub 2016/03/19.
  • Jiao P, Song H, Liu X, et al. Pathogenicity, transmission and antigenic variation of H5N1 highly pathogenic avian influenza viruses. Front Microbiol. Epub 2016/05/21 2016;7:635. doi: 10.3389/fmicb.2016.00635
  • Heider A, Mochalova L, Harder T, et al. Alterations in hemagglutinin receptor-binding specificity accompany the emergence of highly pathogenic avian influenza viruses. J Virol. 2015;89(10):5395–5405. Epub 2015/03/06. doi:10.1128/JVI.03304-14.
  • Lee DH, Bertran K, Kwon JH, et al. Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3.4.4. J Vet Sci. 2017;18(S1): 269–280. Epub 2017/09/02.
  • Chen W, Zhong Y, Qin Y, et al. The evolutionary pattern of glycosylation sites in influenza virus (H5N1) hemagglutinin and neuraminidase. PLoS One. 2012;7(11):e49224.
  • Hiono T, Okamatsu M, Nishihara S, et al. A chicken influenza virus recognizes fucosylated α2,3 sialoglycan receptors on the epithelial cells lining upper respiratory tracts of chickens. Virology. 2014;456-457:131–138.
  • Kaverin NV, Gambaryan AS, Bovin NV, et al. Postreassortment changes in influenza a virus hemagglutinin restoring HA-NA functional match. Virology. 1998;244(2):315–321. Epub 1998/05/28.
  • Wagner R, Matrosovich M, Klenk HD. Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev Med Virol. 2002;12(3): 159–166. Epub 2002/05/03.
  • Ward MJ, Lycett SJ, Avila D, et al. Evolutionary interactions between haemagglutinin and neuraminidase in avian influenza. BMC Evol Biol. 2013;13(1):222.