1,601
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Characterization of the pathogenicity of a Bacillus cereus isolate from the Mariana Trench

, , &
Pages 1062-1075 | Received 15 Feb 2022, Accepted 05 Jun 2022, Published online: 22 Jun 2022

References

  • Liu Y, Lai Q, Goeker M, et al. Genomic insights into the taxonomic status of the Bacillus cereus group. Science Report. 2015;5(1):14082.
  • Ehling-Schulz M, Lereclus D, Koehler, TM. The Bacillus cereus group: Bacillus species with pathogenic potential. Microbiol Spectr. 2019;7(3): 10.1128. GPP3-0032-2018.
  • Palma L, Muñoz D, Berry C, et al. Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins (Basel). 2014;6(12):3296–3325.
  • Bel Y, Ferré J, Hernández-Martínez P. Bacillus thuringiensis toxins: functional characterization and mechanism of action. Toxins (Basel). 2020;12(12):785.
  • Jiménez G, Urdiain M, Cifuentes A, et al. Description of Bacillus toyonensis sp. nov., a novel species of the Bacillus cereus group, and pairwise genome comparisons of the species of the group by means of ANI calculations. Syst Appl Microbiol. 2013;36(6):383–391.
  • Wang Y, Miao Y, Hu LP, et al. Immunization of mice against alpha, beta, and epsilon toxins of Clostridium perfringens using recombinant rCpa-b-x expressed by Bacillus subtilis. Mol Immunol. 2020;123:88–96.
  • Grace C, Frankland P, Frankland F. Studies on some new micro-organisms obtained from air. Philos Trans R Soc London, (B). 1887;178:257–287.
  • Mahler H, Pasi A, Kramer JM. Fulminant liver failure in association with the emetic toxin of Bacillus cereus. N Engl J Med. 1997;336(16):1142–1148.
  • A AK, A KL, B MH. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect. 2000;2(2):189–198.
  • Lund T, Granum PE. Comparison of biological effect of the two different enterotoxin complexes isolated from three different strains of Bacillus cerous. Microbiology. 1997;143(Pt 10):3329.
  • Shinagawa K, Konuma H, Sekita H, et al. Emesis of rhesus monkeys induced by intragastric administration with the HEp-2 vacuolation factor (cereulide) produced by Bacillus cereus. FEMS Microbiol Lett. 2010;130(1):87–90.
  • Bottone EJ. Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev. 2010;23(2):382–398.
  • Fox D, Mathur A, Xue Y, et al. Bacillus cereus non-haemolytic enterotoxin activates the NLRP3 inflammasome. Nat Commun. 2020;11(1):1.
  • Shouya F, Daniel F, Ming S. Mechanisms of gasdermin family members in inflammasome signaling and cell death. J Mol Biol. 2018;430(18 Pt B):3068–3080.
  • Mathur A, Feng S, Hayward JA, et al. A multicomponent toxin from Bacillus cereus incites inflammation and shapes host outcome via the NLRP3 inflammasome. Nat Microbiol. 2019;4(2):362–374.
  • Gao ZM, Huang JM, Cui GJ, et al. In situ meta-omic insights into the community compositions and ecological roles of hadal microbes in the Mariana Trench. Environ Microbiol. 2019;21(11):4092–4108.
  • Nunoura T, Takaki Y, Hirai M, et al. Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth. Proc Natl Acad Sci U S A. 2015;112(11):E1230–6.
  • Huang JM, Wang Y. Genomic differences within the phylum Marinimicrobia: from waters to sediments in the Mariana Trench. Mar Genomics. 2020;50:100699.
  • Sun QL, Wang MQ, Sun L. Characteristics of the cultivable bacteria from sediments associated with two deep-sea hydrothermal vents in Okinawa Trough. World J Microbiol Biotechnol. 2015;31(12):2025–2037.
  • Fang J, Kato C, Runko GM, et al. Predominance of viable spore-forming piezophilic bacteria in high-pressure enrichment cultures from 1.5 to 2.4 km-deep coal-bearing sediments below the ocean floor. Front Microbiol. 2017;8:137.
  • Liu Y, Du J, Lai Q, et al. Proposal of nine novel species of the Bacillus cereus group. Int J Syst Evol Microbiol. 2017;67(8):2499–2508.
  • Wang Y, Zhang J, Sun Y, et al. A crustin from hydrothermal vent shrimp: antimicrobial activity and mechanism. Mar Drugs. 2021;19(3):3.
  • Gu HJ, Sun QL, Luo JC, et al. A first study of the virulence potential of a Bacillus subtilis isolate from deep-sea hydrothermal vent. Front Cell Infect Microbiol. 2019;9:183.
  • Zhao Y, Chen C, Gu HJ, et al. Characterization of the genome feature and toxic capacity of a Bacillus wiedmannii isolate from the hydrothermal field in Okinawa Trough. Front Cell Infect Microbiol. 2019;9:370.
  • Lowe TM, Eddy SR. tRnascan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25(5):955–964.
  • Lagesen K, Hallin P, Rødland EA, et al. Rnammer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35(9):3100–3108.
  • Nawrocki EP, Burge SW, Bateman A, et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 2015;43(Database issue):D130–7.
  • Chen L, Xiong Z, Sun L, et al. VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res. 2012;40(D1):D641–5.
  • Krzywinski M, Schein J, Birol I, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–1645.
  • Chaumeil P-A, et al. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics. 2020;36(6) :1925–1927.
  • Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5(3):e9490.
  • Zhao Y, Jiang S, Zhang J, et al. A virulent Bacillus cereus strain from deep-sea cold seep induces pyroptosis in a manner that involves NLRP3 inflammasome, JNK pathway, and lysosomal rupture. Virulence. 2021;12(1):1362–1376.
  • Kilcullen K, Teunis A, Popova TG, et al. Cytotoxic potential of Bacillus cereus strains ATCC 11778 and 14579 against human lung epithelial cells under microaerobic growth conditions. Front Microbiol. 2016;7:69.
  • Callegan MC, Parkunan SM, Randall CB, et al. The role of pili in Bacillus cereus intraocular infection. Exp Eye Res. 2017;159:69–76.
  • Jamieson AJ, Fujii T, Mayor DJ, et al. Hadal trenches: the ecology of the deepest places on Earth. Trends Ecol Evol. 2010;25(3):190–197.
  • Luo JC, Long H, Zhang J, et al. Characterization of a deep sea Bacillus toyonensis isolate: genomic and pathogenic features. Front Cell Infect Microbiol. 2021;11:629116.
  • Allen MA, Lauro FM, Williams TJ, et al. The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation. Isme J. 2009;3(9):1012–1035.
  • Michoud G, Jebbar M. High hydrostatic pressure adaptive strategies in an obligate piezophile Pyrococcus yayanosii. Sci Rep. 2016;6(1):27289.
  • Oger PM, Jebbar M. The many ways of coping with pressure. Res Microbiol. 2010;161(10):799–809.
  • Campanaro S, Vezzi A, Vitulo N, et al. Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains. BMC Genomics. 2005;6(1):122.
  • Wang F, Wang J, Jian H, et al. Environmental adaptation: genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium Shewanella piezotolerans WP3. PLoS One. 2008;3(4):e1937.
  • Arnesen L, Fagerlund A, Granum PE. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev. 2008;32:4.
  • Pirttijrvi TSM, Andersson MA, Scoging AC, et al. Evaluation of methods for recognising strains of the Bacillus cereus group with food poisoning potential among industrial and environmental contaminants. Syst Appl Microbiol. 1999;22(1):133–144.
  • Beattie SH, Williams AG. Detection of toxigenic strains of Bacillus cereus and other Bacillus spp. With an improved cytotoxicity assay. Lett Appl Microbiol. 2010;28:3.
  • Ramarao N, Sanchis V. The pore-forming haemolysins of bacillus cereus: a review. Toxins (Basel). 2013;5(6):1119–1139.
  • Pomerantsev AP, Kalnin KV, Osorio M, et al. Phosphatidylcholine-Specific phospholipase C and sphingomyelinase activities in bacteria of the Bacillus cereus group. Infect Immun. 2003;71(11):6591–6606.
  • Beecher DJ, Wong ACL. Cooperative, synergistic and antagonistic haemolytic interactions between haemolysin BL, phosphatidylcholine phospholipase C and sphingomyelinase from Bacillus cereus. Microbiology. 2000;146(Pt 12):3033–3039.
  • Ding Y, Uitto VJ, Firth J, et al. Modulation of host matrix metalloproteinases by bacterial virulence factors relevant in human periodontal diseases. Oral Dis. 1995;1(4):279–286.
  • Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25(3):486–541.
  • Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2017;42(4):245–254.
  • Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821–832.
  • Vande Walle L, Lamkanfi M. Pyroptosis. Curr Biol. 2016;26(13):R568–r572.
  • Rieger AM, Nelson KL, Konowalchuk JD, et al. Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. J Vis Exp. 2011;(50). DOI: 10.3791/2597.
  • Wörmer L, Hoshino T, Bowles MW, et al. Microbial dormancy in the marine subsurface: global endospore abundance and response to burial. Sci Adv. 2019;5(2):eaav1024.
  • Nicholson WL, Munakata N, Horneck G, et al. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev. 2000;64(3):548–572.
  • Deakin LJ, Clare S, Fagan RP, et al. The Clostridium difficile spo0a gene is a persistence and transmission factor. Infect Immun. 2012;80(8):2704–2711.
  • Bhattacharjee D, McAllister KN, Sorg JA. germinants and their receptors in clostridia. J Bacteriol. 2016;198(20):2767–2775.
  • Errington J. Regulation of endospore formation in Bacillus subtilis. Nature Rev Microbiol. 2003;1(2):117–126.
  • Setlow P. Spore germination. Curr Opin Microbiol. 2003;6(6):550–556.
  • Shah IM, Laaberki MH, Popham DL, et al. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell. 2008;135(3):486–496.