2,038
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

Using in vivo transcriptomics and RNA enrichment to identify genes involved in virulence of Candida glabrata

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1285-1303 | Received 18 Mar 2022, Accepted 26 Jun 2022, Published online: 31 Jul 2022

References

  • Magill SS, Edwards JR, Bamberg W, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014 Mar 27;370(13):1198–1208.
  • Lamoth F, Lockhart SR, Berkow EL, et al. Changes in the epidemiological landscape of invasive candidiasis. J Antimicrob Chemother. 2018 Jan 1;73(suppl_1):i4–i13.
  • Pfaller MA, Diekema DJ, Turnidge JD, et al. Twenty years of the SENTRY antifungal surveillance program: results for Candida species from 1997-2016. Open Forum Infect Dis. 2019;6(Suppl 1):S79–S94.
  • Bolotin-Fukuhara M, Fairhead C. Candida glabrata: a deadly companion? Yeast. 2014 Aug;31(8):279–288.
  • Maccallum DM. Hosting infection: experimental models to assay Candida virulence. Int J Microbiol. 2012;2012:363764.
  • Kurtzman CP, Robnett CJ. Three new insect-associated species of the yeast genus Candida. Can J Microbiol. 1998 Oct;44(10):965–973.
  • Gabaldon T, Martin T, Marcet-Houben M, et al. Comparative genomics of emerging pathogens in the Candida glabrata clade. BMC Genomics. 2013 Sep 14;14:623.
  • Roetzer A, Gabaldon T, Schuller C. From Saccharomyces cerevisiae to Candida glabratain a few easy steps: important adaptations for an opportunistic pathogen. FEMS Microbiol Lett. 2011 Jan;314(1):1–9.
  • Kim J, Sudbery P. Candida albicans, a major human fungal pathogen. J Microbiol. 2011 Apr;49(2):171–177.
  • Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends Microbiol. 2001 Jul;9(7):327–335.
  • Poulain D. Candida albicans, plasticity and pathogenesis. Crit Rev Microbiol. 2015 Jun;41(2):208–217.
  • Padder SA, Ramzan A, and Tahir I, et al. Metabolic flexibility and extensive adaptability governing multiple drug resistance and enhanced virulence in Candida albicans. Crit Rev Microbiol. 2021;48(2): 1–20.
  • Kaur R, Ma B, Cormack BP. A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata. Proc Natl Acad Sci U S a. 2007 May 1;104(18):7628–7633.
  • Lopez-Fuentes E, Gutierrez-Escobedo G, and Timmermans B, et al. Candida glabrata’s genome plasticity confers a unique pattern of expressed cell wall proteins. J Fungi (Basel). 2018 Jun 5;4:(2). DOI:10.3390/jof4020067
  • Kasper L, Seider K, Hube B. Intracellular survival of Candida glabrata in macrophages: immune evasion and persistence. FEMS Yeast Res. 2015 Aug;15(5):fov042.
  • Cuellar-Cruz M, Briones-Martin-Del-Campo M, Canas-Villamar I, et al. High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. Eukaryot Cell. 2008;7(5):814–825.
  • Chew SY, Ho KL, and Cheah YK, et al. Physiologically relevant alternative carbon sources modulate biofilm formation, cell wall architecture, and the stress and antifungal resistance of Candida glabrata. Int J Mol Sci. 2019 Jun 28;20:(13). DOI:10.3390/ijms20133172
  • Freese S, Vogts T, Speer F, et al. C- and N-catabolic utilization of tricarboxylic acid cycle-related amino acids by Scheffersomyces stipitis and other yeasts. Yeast. 2011;28(5):375–390. DOI:10.1002/yea.1845
  • Rasheed M, Battu A, Kaur R. Host-Pathogen interaction in Candida glabrata infection: current knowledge and implications for antifungal therapy. Expert Rev Anti Infect Ther. 2020 Nov;18(11):1093–1103.
  • Vale-Silva LA, Sanglard D. Tipping the balance both ways: drug resistance and virulence in Candida glabrata. FEMS Yeast Res. 2015 Jun;15(4):fov025.
  • Whaley SG, Rogers PD. Azole resistance in Candida glabrata. Curr Infect Dis Rep. 2016 Dec;18(12):41.
  • Healey KR, Zhao Y, Perez WB, et al. Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance. Nat Commun. 2016 Mar 29;7:11128.
  • Ferrari S, Sanguinetti M, De Bernardis F, et al. Loss of mitochondrial functions associated with azole resistance in Candida glabrata results in enhanced virulence in mice. Antimicrob Agents Chemother. 2011;55(5):1852–1860.
  • Ferrari S, Sanguinetti M, Torelli R, et al. Contribution of CgPDR1-regulated genes in enhanced virulence of azole-resistant Candida glabrata. PLoS One. 2011 Mar 9;6(3):e17589. DOI:10.1371/journal.pone.0017589
  • Nakayama H, Ueno K, Uno J, et al. Growth defects resulting from inhibiting ERG20 and RAM2 in Candida glabrata. FEMS Microbiol Lett. 2011;317(1):27–33.
  • Schrevens S, and Sanglard D. Investigating Candida glabrata urinary tract infections (UTIs) in mice using bioluminescence imaging. J Fungi (Basel). 2021 Oct 9;7(10). DOI:10.3390/jof7100844
  • Rasheed M, Battu A, Kaur R. Aspartyl proteases in Candida glabrata are required for suppression of the host innate immune response. J Biol Chem. 2018 Apr 27;293(17):6410–6433.
  • Kammer P, McNamara S, and Wolf T, et al. Survival strategies of pathogenic Candida species in human blood show independent and specific adaptations. Mbio. 2020 Oct 6;11(5):e02435–20.
  • Pekmezovic M, Hovhannisyan H, Gresnigt MS, et al. Candida pathogens induce protective mitochondria-associated type I interferon signalling and a damage-driven response in vaginal epithelial cells. Nat Microbiol. 2021;6(5):643–657.
  • Amorim-Vaz S, Tran Vdu T, and Pradervand S, et al. RNA enrichment method for quantitative transcriptional analysis of pathogens in vivo applied to the fungus Candida albicans. Mbio. 2015 Sep 22;6(5): e00942–15.
  • Silva S, Negri M, Henriques M, et al. Silicone colonization by non-Candida albicans Candida species in the presence of urine. J Med Microbiol. 2010;59(Pt 7):747–754.
  • Gharaghani M, Taghipour S, Halvaeezadeh M, et al. Candiduria; a review article with specific data from Iran. Turk J Urol. 2018;44(6):445–452.
  • Sierra-Diaz E, Hernandez-Rios CJ, Bravo-Cuellar A. Antibiotic resistance: microbiological profile of urinary tract infections in Mexico. Cir Cir. 2019;87(2):176–182.
  • Peng D, Li X, Liu P, et al. Epidemiology of pathogens and antimicrobial resistance of catheter-associated urinary tract infections in intensive care units: a systematic review and meta-analysis. Am J Infect Control. 2018;46(12):e81–e90.
  • Santana MMP, Hoffmann-Santos HD, Dias LB, et al. Epidemiological profile of patients hospitalized with candiduria in the Central-Western region of Brazil. Rev Iberoam Micol. 2019;36(4):175–180.
  • Jain AK, Misra V, Ranjan N, et al. Speciation, Biofilm formation and antifungal susceptibility of Candida isolates from clinically diagnosed patient of UTI in a tertiary care hospital. J Assoc Physicians India. 2019;67(9):42–45.
  • Gajdacs M, Doczi I, Abrok M, et al. Epidemiology of candiduria and Candida urinary tract infections in inpatients and outpatients: results from a 10-year retrospective survey. Cent European J Urol. 2019;72(2):209–214.
  • Denis B, Chopin D, Piron P, et al. Candiduria in kidney transplant recipients: is antifungal therapy useful? Mycoses. 2018;61(5):298–304. DOI:10.1111/myc.12740
  • Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11(3):R25.
  • Law CW, Chen Y, Shi W, et al. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. [2014 Feb 3];15(2):R29.
  • Leek JT, Johnson WE, Parker HS, et al. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012 Mar 15 28;(6):882–883. DOI:10.1093/bioinformatics/bts034
  • Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020 Apr 15; 36(8):2628–2629. DOI:10.1093/bioinformatics/btz931
  • Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. The Innovation. 2021;2(3):100141. 2021/08/28/. DOI:10.1016/j.xinn.2021.100141
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Statistical Soc Ser B Methodol. 1995;57(1):289–300.
  • Yu G. Gene ontology semantic similarity analysis using GOSemSim. In: Kidder B, editor. Stem cell transcriptional networks: Methods and protocols. New York, NY: Springer US; 2020. pp. 207–215.
  • Kannan A, Asner SA, Trachsel E, et al. Comparative genomics for the elucidation of multidrug resistance in Candida lusitaniae. mBio. 2019 Dec 24;10(6). DOI:10.1128/mBio.02512-19
  • Vale-Silva L, Ischer F, Leibundgut-Landmann S, et al. Gain of function mutations in CgPDR1, a regulator of antifungal drug resistance in Candida glabrata, control adherence to host cells. Infect Immun. 2013 Mar 4;81(5):1709–1720.
  • Domergue R, Castaño I, De Las Peñas A, et al. Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Sci. 2005 May 6;308(5723):866–870.
  • Landry DW, Bazari H. 116 - Approach to the patient with renal disease. In: Goldman L, Schafer AI, editors. Goldman’s cecil medicine (Twenty Fourth Edition). Philadelphia: W.B. Saunders; 2012. pp. 708–716.
  • Domergue R, Castano I, De Las Penas A, et al. Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Sci. 2005 May 6;308(5723):866–870.
  • Ferrari S, Ischer F, Calabrese D, et al. Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence. PLoS Pathog. 2009 Jan 16;5(1):e1000268.
  • Naglik J, Albrecht A, Bader O, et al. Candida albicans proteinases and host/pathogen interactions. Cell Microbiol. 2004;6(10):915–926.
  • Vale-Silva L, Beaudoing E, and Tran VDT, et al. Comparative genomics of two sequential Candida glabrata clinical isolates. G3 (Bethesda). 2017 Aug 7; 7(8):2413–2426.
  • Xu Z, Green B, Benoit N, et al. De Novo genome assembly of Candida glabrata reveals cell wall protein complement and structure of dispersed tandem repeat arrays. Mol Microbiol. 2020;113(6):1209–1224.
  • Shimamura S, Miyazaki T, Tashiro M, et al. Autophagy-Inducing factor Atg1 is required for virulence in the pathogenic fungus Candida glabrata. Front Microbiol. 2019;10:27.
  • Nagi M, Tanabe K, Ueno K, et al. The Candida glabrata sterol scavenging mechanism, mediated by the ATP-binding cassette transporter Aus1p, is regulated by iron limitation. Mol Microbiol. 2013;88(2):371–381.
  • Srivastava VK, Suneetha KJ, Kaur R. The mitogen-activated protein kinase CgHog1 is required for iron homeostasis, adherence and virulence in Candida glabrata. Febs J. 2015 Jun;282(11):2142–2166.
  • Saijo T, Miyazaki T, Izumikawa K, et al. Skn7p is involved in oxidative stress response and virulence of Candida glabrata. Mycopathologia. 2010;169(2):81–90. DOI:10.1007/s11046-009-9233-5
  • Minematsu A, Miyazaki T, Shimamura S, et al. Vacuolar proton-translocating ATPase is required for antifungal resistance and virulence of Candida glabrata. PLoS One. 2019;14(1):e0210883. DOI:10.1371/journal.pone.0210883
  • Rai MN, Sharma V, Balusu S, et al. An essential role for phosphatidylinositol 3-kinase in the inhibition of phagosomal maturation, intracellular survival and virulence in Candida glabrata. Cell Microbiol. 2015;17(2):269–287.
  • Chen YL, Konieczka JH, and Springer DJ, et al. Convergent Evolution of calcineurin pathway roles in thermotolerance and virulence in Candida glabrata. G3 (Bethesda). 2012;2(6):675–691.
  • Lebel K, MacPherson S, Turcotte B. New tools for phenotypic analysis in Candida albicans: the WAR1 gene confers resistance to sorbate. Yeast. 2006 Mar;23(4):249–259.
  • Vylkova S, Lorenz MC. Modulation of phagosomal pH by Candida albicans promotes hyphal morphogenesis and requires Stp2p, a regulator of amino acid transport. PLoS Pathog. 2014 Mar;10(3):e1003995.
  • Sprenger M, Brunke S, and Hube B, et al. A TRP1-marker-based system for gene complementation, overexpression, reporter gene expression and gene modification in Candida glabrata. FEMS Yeast Res. 2021 Jan 6;20(8). DOI:10.1093/femsyr/foaa066
  • Van Zeebroeck G, Rubio-Texeira M, Schothorst J, et al. Specific analogues uncouple transport, signalling, oligo-ubiquitination and endocytosis in the yeast Gap1 amino acid transceptor. Mol Microbiol. 2014;93(2):213–233.
  • Donaton MC, Holsbeeks I, Lagatie O, et al. The Gap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase a targets in the yeast Saccharomyces cerevisiae. Mol Microbiol. 2003;50(3):911–929.
  • Van Zeebroeck G, Bonini BM, Versele M, et al. Transport and signaling via the amino acid binding site of the yeast Gap1 amino acid transceptor. Nat Chem Biol. 2009;5(1):45–52.
  • Lee YJ, Jang JW, Kim KJ, et al. TCA cycle-independent acetate metabolism via the glyoxylate cycle in Saccharomyces cerevisiae. Yeast. 2011;28(2):153–166. DOI:10.1002/yea.1828.
  • Chen Y, Siewers V, Nielsen J. Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae. PLoS One. 2012;7(8):e42475.
  • Nguyen TD, Walker ME, Gardner JM, et al. Appropriate vacuolar acidification in Saccharomyces cerevisiae is associated with efficient high sugar fermentation. Food Microbiol. 2018;70:262–268.
  • Outten CE, Falk RL, Culotta VC. Cellular factors required for protection from hyperoxia toxicity in Saccharomyces cerevisiae. Biochem J. 2005 May 15;388(Pt 1):93–101.
  • Merz S, Westermann B. Genome-Wide deletion mutant analysis reveals genes required for respiratory growth, mitochondrial genome maintenance and mitochondrial protein synthesis in Saccharomyces cerevisiae. Genome Biol. 2009;10(9):R95.
  • Banerjee M, Thompson DS, Lazzell A, et al. UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Mol Biol Cell. 2008;19(4):1354–1365.
  • Nagi M, Nakayama H, Tanabe K, et al. Transcription factors CgUPC2A and CgUPC2B regulate ergosterol biosynthetic genes in Candida glabrata. Genes Cells. 2011;16(1):80–89.
  • Van Ende M, Timmermans B, Vanreppelen G, et al. The involvement of the Candida glabrata trehalase enzymes in stress resistance and gut colonization. Virulence. 2021;12(1):329–345.
  • Geiss GK, Bumgarner RE, Birditt B, et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol. 2008;26(3):317–325.
  • Cheng S, Clancy CJ, Xu W, et al. Profiling of Candida albicans gene expression during intra-abdominal candidiasis identifies biologic processes involved in pathogenesis. J Infect Dis. 2013 Nov 1;208(9):1529–1537.
  • Xu W, Solis NV, Ehrlich RL, et al. Activation and alliance of regulatory pathways in C. albicans during mammalian infection. PLoS Biol. 2015;13(2):e1002076.
  • O’-Meara TR, Xu W, Selvig KM, et al. The Cryptococcus neoformans Rim101 transcription factor directly regulates genes required for adaptation to the host. Mol Cell Biol. 2014;34(4):673–684.
  • Fanning S, Xu W, Solis N, et al. Divergent targets of Candida albicans biofilm regulator Bcr1 in vitro and in vivo. Eukaryot Cell. 2012;11(7):896–904.
  • Chung M, Teigen L, Liu H, et al. Targeted enrichment outperforms other enrichment techniques and enables more multi-species RNA-Seq analyses. Sci Rep. 2018 Sep 6;8(1):13377.
  • Sanglard D, Ischer F, Calabrese D, et al. The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob Agents Chemother. 1999;43(11):2753–2765.
  • Shor E, Garcia-Rubio R, DeGregorio L, et al. A noncanonical DNA damage checkpoint response in a major fungal pathogen. mBio. 2020 Dec 15;11(6). DOI:10.1128/mBio.03044-20
  • Shor E, Perlin DS. DNA damage response of major fungal pathogen Candida glabrata offers clues to explain its genetic diversity. Curr Genet. 2021 Jun;67(3):439–445.
  • Navarathna DH, Lionakis MS, Lizak MJ, et al. Urea amidolyase (DUR1,2) contributes to virulence and kidney pathogenesis of Candida albicans. PLoS One. 2012;7(10):e48475.
  • Brunke S, Quintin J, Kasper L, et al. Of mice, flies–and men? Comparing fungal infection models for large-scale screening efforts. Dis Model Mech. 2015;8(5):473–486.
  • Kraidlova L, Van Zeebroeck G, Van Dijck P, et al. The Candida albicans GAP gene family encodes permeases involved in general and specific amino acid uptake and sensing. Eukaryot Cell. 2011;10(9):1219–1229.
  • Kraidlova L, Schrevens S, and Tournu H, et al. Characterization of the Candida albicans amino acid permease family: Gap2 is the only general amino acid permease and Gap4 is an S-Adenosylmethionine (SAM) transporter required for SAM-Induced Morphogenesis. mSphere. 2016;1(6). DOI:10.1128/mSphere.00284-1616
  • Zhang W, Du G, and Zhou J, et al. Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2018;82(1). DOI:10.1128/MMBR.00040-17
  • Brega E, Zufferey R, Mamoun CB. Candida albicans Csy1p is a nutrient sensor important for activation of amino acid uptake and hyphal morphogenesis. Eukaryot Cell. 2004 Feb;3(1):135–143.
  • Schrevens S, Van Zeebroeck G, Riedelberger M, et al. Methionine is required for cAMP-PKA mediated morphogenesis and virulence of Candida albicans. Mol Microbiol. 2018;109(3):415–416.
  • Perez-Delos Santos FJ, Riego-Ruiz L. Gln3 is a main regulator of nitrogen assimilation in Candida glabrata. Microbiol (Reading). 2016 Aug;162(8):1490–1499.
  • Perez-de Los Santos FJ, Garcia-Ortega LF, Robledo-Marquez K, et al. Transcriptome Analysis Unveils Gln3 Role in Amino Acids Assimilation and Fluconazole Resistance in Candida glabrata. J Microbiol Biotechnol. 2021 May 28;31(5):659–666.
  • Lorenz MC, Fink GR. The glyoxylate cycle is required for fungal virulence. Nature. 2001 Jul 5; 412(6842):83–86. DOI:10.1038/35083594
  • Hill KJ, Stevens TH. Vma22p is a novel endoplasmic reticulum-associated protein required for assembly of the yeast vacuolar H(+)-ATPase complex. J Biol Chem. 1995 Sep 22;270(38):22329–22336.
  • Kane PM. The where, when, and how of organelle acidification by the yeast vacuolar H±ATPase. Microbiol Mol Biol Rev. 2006 Mar;70(1):177–191.
  • Dimmer KS, Fritz S, Fuchs F, et al. Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol Biol Cell. 2002;13(3):847–853.
  • Serrano R, Bernal D, Simon E, et al. Copper and iron are the limiting factors for growth of the yeast Saccharomyces cerevisiae in an alkaline environment. J Biol Chem. 2004 May 7;279(19):19698–19704.
  • Schmidt M, Akasaka K, Messerly JT, et al. Role of Hog1, Tps1 and Sod1 in boric acid tolerance of Saccharomyces cerevisiae. Microbiol (Reading). 2012;158(Pt 10):2667–2678.
  • Epp E, Vanier G, Harcus D, et al. Reverse genetics in Candida albicans predicts ARF cycling is essential for drug resistance and virulence. PLoS Pathog. 2010 Feb 5;6(2):e1000753.
  • Nishikawa H, Miyazaki T, and Nakayama H, et al. Roles of vacuolar H±ATPase in the oxidative stress response of Candida glabrata. FEMS Yeast Res. 2016;16(5). DOI:10.1093/femsyr/fow054
  • Gale AN, Sakhawala RM, and Levitan A, et al. Identification of essential genes and fluconazole susceptibility genes in Candida glabrata by profiling hermes transposon insertions. G3 (Bethesda). 2020 Oct 5; 10(10):3859–3870.
  • Allert S, Schulz D, Kammer P, et al. From environmental adaptation to host survival: Attributes that mediate pathogenicity of Candida auris. Virulence. 2022;13(1):191–214.
  • Mahl CD, Behling CS, Hackenhaar FS, et al. Induction of ROS generation by fluconazole in Candida glabrata: activation of antioxidant enzymes and oxidative DNA damage. Diagn Microbiol Infect Dis. 2015;82(3):203–208.