3,219
Views
2
CrossRef citations to date
0
Altmetric
Signature Reviews

Pathogenicity and virulence of Mycoplasma genitalium: Unraveling Ariadne’s Thread

, , , , & ORCID Icon
Pages 1161-1183 | Received 18 Jan 2022, Accepted 26 Jun 2022, Published online: 05 Jul 2022

References

  • Fraser CM, Gocayne JD, White O, et al. The minimal gene complement of Mycoplasma genitalium. Science. 1995;270(5235):397–403. doi:10.1126/science.270.5235.397
  • Tully JG, Taylor-Robinson D, Cole RM, et al. A newly discovered mycoplasma in the human urogenital tract. Lancet. 1981;1(8233):1288–1291.
  • Tully JG, Rose DL, Baseman JB, et al. Mycoplasma pneumoniae and Mycoplasma genitalium mixture in synovial fluid isolate. J Clin Microbiol. 1995;33(7):1851–1855. doi:10.1128/jcm.33.7.1851-1855.1995
  • Taylor-Robinson D, Gilroy CB, Horowitz S, et al. Mycoplasma genitalium in the joints of two patients with arthritis. Eur J Clin Microbiol Infect Dis. 1994;13(12):1066–1069. doi:10.1007/BF02111830
  • Jensen JS, Cusini M, Gomberg M, et al. European guideline on Mycoplasma genitalium infections. J Eur Acad Dermatol Venereol. 2016;30(10):1650–1656. doi:10.1111/jdv.13849
  • Aparicio D, Scheffer MP, Marcos-Silva M, et al. Structure and mechanism of the Nap adhesion complex from the human pathogen Mycoplasma genitalium. Nat Commun. 2020;11(1):2877. doi:10.1038/s41467-020-16511-2
  • Gnanadurai R, Fifer H. Mycoplasma genitalium: a review. Microbiology (Reading). 2020;166(1):21–29.
  • Taylor-Robinson D, Jensen JS. Mycoplasma genitalium: from Chrysalis to multicolored butterfly. Clin Microbiol Rev. 2011;24(3):498–514.
  • Tuddenham S, Hamill MM, Ghanem KG. Diagnosis and treatment of sexually transmitted infections: a review. JAMA. 2022;327(2):161–172.
  • Fernández-Huerta M, Serra-Pladevall J, Esperalba J, et al. Single-locus-sequence-based typing of the mgpB gene reveals transmission dynamics in Mycoplasma genitalium. J Clin Microbiol. 2020;58(4):e01886–19. doi:10.1128/JCM.01886-19
  • van der Schalk TE, Braam JF, Kusters JG. Molecular basis of antimicrobial resistance in Mycoplasma genitalium. Int J Antimicrob Agents. 2020;55(4):105911.
  • Machalek DA, Tao Y, Shilling H, et al. Prevalence of mutations associated with resistance to macrolides and fluoroquinolones in Mycoplasma genitalium: a systematic review and meta-analysis. Lancet Infect Dis. 2020;20(11):1302–1314. doi:10.1016/S1473-3099(20)30154-7
  • Manhart LE, Broad JM, Golden MR. Mycoplasma genitalium: should we treat and how?. Clin Infect Dis. 2011;53(Suppl 3):S129–142.
  • Alvarez RA, Blaylock MW, Baseman JB. Surface localized glyceraldehyde-3-phosphate dehydrogenase of Mycoplasma genitalium binds mucin. Mol Microbiol. 2003;48(5):1417–1425.
  • Burgos R, Pich OQ, Querol E, et al. Functional analysis of the Mycoplasma genitalium MG312 protein reveals a specific requirement of the MG312 N-terminal domain for gliding motility. J Bacteriol. 2007;189(19):7014–7023.
  • Li L, Krishnan M, Baseman JB, et al. Molecular cloning, expression, and characterization of a Ca2±dependent, membrane-associated nuclease of Mycoplasma genitalium. J Bacteriol. 2010;192(19):4876–4884.
  • McGowin CL, Totten PA. The unique microbiology and molecular pathogenesis of Mycoplasma genitalium. J Infect Dis. 2017;216(suppl_2):S382–S388.
  • Zarei O, Rezania S, Mousavi A. Mycoplasma genitalium and cancer: a brief review. Asian Pac J Cancer Prev. 2013;14(6):3425–3428.
  • Burgos R, Pich OQ, Ferrer-Navarro M, et al. Mycoplasma genitalium P140 and P110 cytadhesins are reciprocally stabilized and required for cell adhesion and terminal-organelle development. J Bacteriol. 2006;188(24):8627–8637.
  • Martinelli L, García-Morales L, Querol E, et al. Structure-guided mutations in the terminal organelle protein MG491 cause major motility and morphologic alterations on Mycoplasma genitalium. PLoS Pathog. 2016;12(4):e1005533.
  • Seybert A, Gonzalez-Gonzalez L, Scheffer MP, et al. Cryo-Electron tomography analyses of terminal organelle mutants suggest the motility mechanism of Mycoplasma genitalium. Mol Microbiol. 2018;108(3):319–329. doi:10.1111/mmi.13938
  • Pich OQ, Burgos R, Querol E, et al. P110 and P140 cytadherence-related proteins are negative effectors of terminal organelle duplication in Mycoplasma genitalium. PLoS One. 2009;4(10):e7452.
  • Pich OQ, Burgos R, Ferrer-Navarro M, et al. Role of Mycoplasma genitalium MG218 and MG317 cytoskeletal proteins in terminal organelle organization, gliding motility and cytadherence. Microbiology (Reading). 2008;154(Pt 10):3188–3198.
  • Mernaugh GR, Dallo SF, Holt SC, et al. Properties of adhering and nonadhering populations of Mycoplasma genitalium. Clin Infect Dis. 1993;17(Suppl 1):S69–78.
  • Vizarraga D, Pérez-Luque R, Martín J, et al. Alternative conformation of the C-domain of the P140 protein from Mycoplasma genitalium. Acta Crystallogr F Struct Biol Commun. 2020;76(Pt 11):508–516.
  • Ma L, Jensen JS, Mancuso M, et al. Kinetics of genetic variation of the Mycoplasma genitalium MG192 gene in experimentally infected chimpanzees. Infect Immun. 2015;84(3):747–753.
  • Aparicio D, Torres-Puig S, Ratera M, et al. Mycoplasma genitalium adhesin P110 binds sialic-acid human receptors. Nat Commun. 2018;9(1):4471. doi:10.1038/s41467-018-06963-y
  • García-Morales L, González-González L, Querol E, et al. A minimized motile machinery for Mycoplasma genitalium. Mol Microbiol. 2016;100(1):125–138.
  • Reddy SP, Rasmussen WG, Baseman JB. Molecular cloning and characterization of an adherence-related operon of Mycoplasma genitalium. J Bacteriol. 1995;177(20):5943–5951.
  • Dhandayuthapani S, Rasmussen WG, Baseman JB. Disruption of gene mg218 of Mycoplasma genitalium through homologous recombination leads to an adherence-deficient phenotype. Proc Natl Acad Sci USA. 1999;96(9):5227–5232.
  • Dhandayuthapani S, Rasmussen WG, Baseman JB. Stability of cytadherence-related proteins P140/P110 in Mycoplasma genitalium requires MG218 and unidentified factors. Arch Med Res. 2002;33(1):1–5.
  • Pich OQ, Burgos R, Ferrer-Navarro M, et al. Mycoplasma genitalium mg200 and mg386 genes are involved in gliding motility but not in cytadherence. Mol Microbiol. 2006;60(6):1509–1519.
  • Calisto BM, Broto A, Martinelli L, et al. The EAGR box structure: a motif involved in mycoplasma motility. Mol Microbiol. 2012;86(2):382–393.
  • Burgos R, Pich OQ, Querol E, et al. Deletion of the Mycoplasma genitalium MG_217 gene modifies cell gliding behaviour by altering terminal organelle curvature. Mol Microbiol. 2008;69(4):1029–1040.
  • Iverson-Cabral SL, Astete SG, Cohen CR, et al. MgpB and mgpC sequence diversity in Mycoplasma genitalium is generated by segmental reciprocal recombination with repetitive chromosomal sequences. Mol Microbiol. 2007;66(1):55–73.
  • Iverson-Cabral SL, Wood GE, Totten PA. Analysis of the Mycoplasma genitalium MgpB Adhesin to predict membrane topology, investigate antibody accessibility, characterize amino acid diversity, and identify functional and immunogenic epitopes. PLoS One. 2015;10(9):e0138244.
  • Opitz O, Jacobs E. Adherence epitopes of Mycoplasma genitalium adhesin. J Gen Microbiol. 1992;138(9):1785–1790.
  • Inamine JM, Loechel S, Collier AM, et al. Nucleotide sequence of the MgPa (mgp) operon of Mycoplasma genitalium and comparison to the P1 (mpp) operon of Mycoplasma pneumoniae. Gene. 1989;82(2):259–267.
  • Vizarraga D, Torres-Puig S, Aparicio D, et al. The sialoglycan binding adhesins of Mycoplasma genitalium and Mycoplasma pneumoniae. Trends Microbiol. 2021;29(6):477–481. doi:10.1016/j.tim.2021.01.011
  • Zarei O, Irajian GR, Zarnani AH, et al. Peptide-based polyclonal antibody production against P110 protein of Mycoplasma genitalium. Avicenna J Med Biotechnol. 2011;3(2):79–85.
  • Ma L, Jensen JS, Myers L, et al. Mycoplasma genitalium: an efficient strategy to generate genetic variation from a minimal genome. Mol Microbiol. 2007;66(1):220–236. doi:10.1111/j.1365-2958.2007.05911.x
  • Svenstrup HF, Jensen JS, and Gevaert K, et al. Identification and characterization of immunogenic proteins of Mycoplasma genitalium. Clin Vaccine Immunol. 2006;13(8):913–922.
  • Relich RF, Balish MF. Insights into the function of Mycoplasma pneumoniae protein P30 from orthologous gene replacement. Microbiology (Reading). 2011;157(Pt 10):2862–2870.
  • Chang HY, Jordan JL, Krause DC. Domain analysis of protein P30 in Mycoplasma pneumoniae cytadherence and gliding motility. J Bacteriol. 2011;193(7):1726–1733.
  • Das K, De la Garza G, Maffi S, et al. Methionine sulfoxide reductase a (MsrA) deficient Mycoplasma genitalium shows decreased interactions with host cells. PLoS One. 2012;7(4):e36247.
  • Dallo SF, Lazzell AL, Chavoya A, et al. Biofunctional domains of the Mycoplasma pneumoniae P30 adhesin. Infect Immun. 1996;64(7):2595–2601. doi:10.1128/iai.64.7.2595-2601.1996
  • Chaudhry R, Ghosh A, Chandolia A. Pathogenesis of Mycoplasma pneumoniae: an update. Indian J Med Microbiol. 2016;34(1):7–16.
  • Krause DC, Leith DK, Baseman JB. Reacquisition of specific proteins confers virulence in Mycoplasma pneumoniae. Infect Immun. 1983;39(2):830–836.
  • Svenstrup HF, Fedder J, Abraham-Peskir J, et al. Mycoplasma genitalium attaches to human spermatozoa. Hum Reprod. 2003;18(10):2103–2109.
  • Collier AM. Attachment of Mycoplasma genitalium to the ciliated epithelium of human fallopian tubes. Recent Adv Mycoplasmology. 1990;730–732.
  • Scheffer MP, Gonzalez-Gonzalez L, Seybert A, et al. Structural characterization of the NAP; the major adhesion complex of the human pathogen Mycoplasma genitalium. Mol Microbiol. 2017;105(6):869–879. doi:10.1111/mmi.13743
  • Miyata M. Unique centipede mechanism of mycoplasma gliding. Annu Rev Microbiol. 2010;64(1):519–537.
  • Hasselbring BM, Krause DC. Cytoskeletal protein P41 is required to anchor the terminal organelle of the wall-less prokaryote Mycoplasma pneumoniae. Mol Microbiol. 2007;63(1):44–53.
  • Martinelli L, Lalli D, García-Morales L, et al. A major determinant for gliding motility in Mycoplasma genitalium: the interaction between the terminal organelle proteins MG200 and MG491. J Biol Chem. 2015;290(3):1699–1711. doi:10.1074/jbc.M114.594762
  • Kannan TR, Baseman JB. ADP-Ribosylating and vacuolating cytotoxin of Mycoplasma pneumoniae represents unique virulence determinant among bacterial pathogens. Proc Natl Acad Sci USA. 2006;103(17):6724–6729.
  • Zhang W, Baseman JB. Transcriptional regulation of MG_149, an osmoinducible lipoprotein gene from Mycoplasma genitalium. Mol Microbiol. 2011;81(2):327–339.
  • Yamamoto T, Kida Y, Sakamoto Y, et al. Mpn491, a secreted nuclease of Mycoplasma pneumoniae, plays a critical role in evading killing by neutrophil extracellular traps. Cell Microbiol. 2017;19(3):e12666.
  • McGowin CL, Radtke AL, Abraham K, et al. Mycoplasma genitalium infection activates cellular host defense and inflammation pathways in a 3-dimensional human endocervical epithelial cell model. J Infect Dis. 2013;207(12):1857–1868.
  • McGowin CL, Popov VL, Pyles RB. Intracellular Mycoplasma genitalium infection of human vaginal and cervical epithelial cells elicits distinct patterns of inflammatory cytokine secretion and provides a possible survival niche against macrophage-mediated killing. BMC Microbiol. 2009;9(1):139.
  • Dehon PM, McGowin CL. The Immunopathogenesis of Mycoplasma genitalium infections in women: a narrative review. Sex Transm Dis. 2017;44(7):428–432.
  • McGowin CL, Annan RS, Quayle AJ, et al. Persistent Mycoplasma genitalium infection of human endocervical epithelial cells elicits chronic inflammatory cytokine secretion. Infect Immun. 2012;80(11):3842–3849. doi:10.1128/IAI.00819-12
  • Razin S, Yogev D, Naot Y. Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev. 1998;62(4):1094–1156.
  • Shimizu T, Kida Y, Kuwano K. A triacylated lipoprotein from Mycoplasma genitalium activates NF-kappaB through toll-like receptor 1 (TLR1) and TLR2. Infect Immun. 2008;76(8):3672–3678.
  • Christodoulides A, Gupta N, Yacoubian V, et al. The role of lipoproteins in Mycoplasma-mediated immunomodulation. Front Microbiol. 2018;9:1682.
  • Kurokawa K, Ryu KH, Ichikawa R, et al. Novel bacterial lipoprotein structures conserved in low-GC content gram-positive bacteria are recognized by Toll-like receptor 2. J Biol Chem. 2012;287(16):13170–13181. doi:10.1074/jbc.M111.292235
  • Shimizu T. Inflammation-inducing factors of Mycoplasma pneumoniae. Front Microbiol. 2016;7:414.
  • Browning GF, Marenda MS, Noormohammadi AH, et al. The central role of lipoproteins in the pathogenesis of mycoplasmoses. Vet Microbiol. 2011;153(1–2):44–50.
  • Benedetti F, Curreli S, Zella D. Mycoplasmas-host interaction: mechanisms of inflammation and association with cellular transformation. Microorganisms. 2020;8(9):1351.
  • McGowin CL, Ma L, Martin DH, et al. Mycoplasma genitalium-encoded MG309 activates NF-kappaB via toll-like receptors 2 and 6 to elicit proinflammatory cytokine secretion from human genital epithelial cells. Infect Immun. 2009;77(3):1175–1181.
  • Ueno PM, Timenetsky J, Centonze VE, et al. Interaction of Mycoplasma genitalium with host cells: evidence for nuclear localization. Microbiology (Reading). 2008;154(Pt 10):3033–3041. doi:10.1099/mic.0.2008/020735-0
  • Grover RK, Zhu X, Nieusma T, et al. A structurally distinct human mycoplasma protein that generically blocks antigen-antibody union. Science. 2014;343(6171):656–661. doi:10.1126/science.1246135
  • Saikolappan S, Sasindran SJ, Yu HD, et al. The Mycoplasma genitalium MG_454 gene product resists killing by organic hydroperoxides. J Bacteriol. 2009;191(21):6675–6682.
  • Roilides E, Simitsopoulou M, Katragkou A, et al. How Biofilms Evade Host Defenses. Microbiol Spectr. 2015;3(3). doi:10.1128/microbiolspec.MB-0012-2014
  • Daubenspeck JM, Totten AH, Needham J, et al. Mycoplasma genitalium biofilms contain poly-GlcNac and contribute to antibiotic resistance. Front Microbiol. 2020;11:585524.
  • Minion FC, Jarvill-Taylor KJ, Billings DE, et al. Membrane-associated nuclease activities in mycoplasmas. J Bacteriol. 1993;175(24):7842–7847.
  • Yu Y, Wang J, Han R, et al. Mycoplasma hyopneumoniae evades complement activation by binding to factor H via elongation factor thermo unstable (EF-Tu). Virulence. 2020;11(1):1059–1074. doi:10.1080/21505594.2020.1806664
  • Burgos R, Totten PA. MG428 is a novel positive regulator of recombination that triggers mgpB and mgpC gene variation in Mycoplasma genitalium. Mol Microbiol. 2014;94(2):290–306.
  • Torres-Puig S, Martínez-Torró C, Granero-Moya I, et al. Activation of σ20-dependent recombination and horizontal gene transfer in Mycoplasma genitalium. DNA Res. 2018;25(4):383–393.
  • Burgos R, Wood GE, Young L, et al. RecA mediates MgpB and MgpC phase and antigenic variation in Mycoplasma genitalium, but plays a minor role in DNA repair. Mol Microbiol. 2012;85(4):669–683.
  • Burgos R, Totten PA. Characterization of the operon encoding the Holliday junction helicase RuvAB from Mycoplasma genitalium and its role in mgpB and mgpC gene variation. J Bacteriol. 2014;196(8):1608–1618.
  • Sluijter M, Kaptein E, Spuesens EB, et al. The Mycoplasma genitalium MG352-encoded protein is a Holliday junction resolvase that has a non-functional orthologue in Mycoplasma pneumoniae. Mol Microbiol. 2010;77(5):1261–1277. doi:10.1111/j.1365-2958.2010.07288.x
  • Arfi Y, Minder L, Di Primo C, et al. MIB-MIP is a mycoplasma system that captures and cleaves immunoglobulin G. Proc Natl Acad Sci USA. 2016;113(19):5406–5411. doi:10.1073/pnas.1600546113
  • Zhang XH, Weissbach H. Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductases. Biol Rev Camb Philos Soc. 2008;83(3):249–257.
  • Dhandayuthapani S, Blaylock MW, Bebear CM, et al. Peptide methionine sulfoxide reductase (MsrA) is a virulence determinant in Mycoplasma genitalium. J Bacteriol. 2001;183(19):5645–5650.
  • Sasindran SJ, Saikolappan S, Dhandayuthapani S. Methionine sulfoxide reductases and virulence of bacterial pathogens. Future Microbiol. 2007;2(6):619–630.
  • Zhang W, Baseman JB. Functional characterization of osmotically inducible protein C (MG_427) from Mycoplasma genitalium. J Bacteriol. 2014;196(5):1012–1019.
  • Wood GE, Iverson-Cabral SL, Gillespie CW, et al. Sequence variation and immunogenicity of the Mycoplasma genitalium MgpB and MgpC adherence proteins during persistent infection of men with non-gonococcal urethritis[j]. PLoS One. 2020;15(10):e0240626. doi:10.1371/journal.pone.0240626
  • Deitsch KW, Lukehart SA, Stringer JR. Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat Rev Microbiol. 2009;7(7):493–503.
  • Citti C, Nouvel LX, Baranowski E. Phase and antigenic variation in mycoplasmas. Future Microbiol. 2010;5(7):1073–1085.
  • Ma L, Mancuso M, Williams JA, et al. Extensive variation and rapid shift of the MG192 sequence in Mycoplasma genitalium strains from patients with chronic infection. Infect Immun. 2014;82(3):1326–1334. doi:10.1128/IAI.01526-13
  • Burgos R, Wood GE, Iverson-Cabral SL, et al. Mycoplasma genitalium nonadherent phase variants arise by multiple mechanisms and escape antibody-dependent growth inhibition. Infect Immun. 2018;86(4):e00866–17.
  • Iverson-Cabral SL, Astete SG, Cohen CR, et al. Intrastrain heterogeneity of the mgpB gene in Mycoplasma genitalium is extensive in vitro and in vivo and suggests that variation is generated via recombination with repetitive chromosomal sequences[j]. Infect Immun. 2006;74(7):3715–3726. doi:10.1128/IAI.00239-06
  • Ma L, Jensen JS, Mancuso M, et al. Genetic variation in the complete MgPa operon and its repetitive chromosomal elements in clinical strains of Mycoplasma genitalium. PLoS One. 2010;5(12):e15660.
  • Wood GE, Iverson-Cabral SL, Patton DL, et al. Persistence, immune response, and antigenic variation of Mycoplasma genitalium in an experimentally infected pig-tailed macaque (Macaca nemestrina). Infect Immun. 2013;81(8):2938–2951. doi:10.1128/IAI.01322-12
  • Ma L, Taylor S, Jensen JS, et al. Short tandem repeat sequences in the Mycoplasma genitalium genome and their use in a multilocus genotyping system. BMC Microbiol. 2008;8:130.
  • Ma L, Jensen JS, Mancuso M, et al. Variability of trinucleotide tandem repeats in the MgPa operon and its repetitive chromosomal elements in Mycoplasma genitalium. J Med Microbiol. 2012;61(Pt 2):191–197. doi:10.1099/jmm.0.030858-0
  • Rocha EP, Blanchard A. Genomic repeats, genome plasticity and the dynamics of Mycoplasma evolution. Nucleic Acids Res. 2002;30(9):2031–2042.
  • Hall J, Hazlewood GP, Huskisson NS, et al. Conserved serine-rich sequences in xylanase and cellulase from Pseudomonas fluorescens subspecies cellulosa: internal signal sequence and unusual protein processing. Mol Microbiol. 1989;3(9):1211–1219. doi:10.1111/j.1365-2958.1989.tb00271.x
  • Bowen S, Wheals AE. Ser/thr-Rich domains are associated with genetic variation and morphogenesis in Saccharomyces cerevisiae. Yeast. 2006;23(8):633–640.
  • Sluijter M, Spuesens EB, Hartwig NG, et al. The Mycoplasma pneumoniae MPN490 and Mycoplasma genitalium MG339 genes encode reca homologs that promote homologous DNA strand exchange. Infect Immun. 2009;77(11):4905–4911.
  • Torres-Puig S, Broto A, Querol E, et al. A novel sigma factor reveals a unique regulon controlling cell-specific recombination in Mycoplasma genitalium. Nucleic Acids Res. 2015;43(10):4923–4936.
  • Dallo SF, Baseman JB. Intracellular DNA replication and long-term survival of pathogenic mycoplasmas. Microb Pathog. 2000;29(5):301–309.
  • Stein MA, Baseman JB. The evolving saga of Mycoplasma genitalium. Clin Microbiol Newsl. 2006;28(6):41–48.
  • Clark GW, Tillier ER. Loss and gain of GroEL in the Mollicutes. Biochem Cell Biol. 2010;88(2):185–194.
  • Woof JM. Immunoglobulins and their receptors, and subversion of their protective roles by bacterial pathogens. Biochem Soc Trans. 2016;44(6):1651–1658.
  • Arfi Y, Lartigue C, Sirand-Pugnet P, et al. Beware of mycoplasma anti-immunoglobulin strategies. Mbio. 2021;12(6):e0197421.
  • Pritchard RE, Prassinos AJ, Osborne JD, et al. Reduction of hydrogen peroxide accumulation and toxicity by a catalase from Mycoplasma iowae. PLoS One. 2014;9(8):e105188.
  • Blötz C, Stülke J. Glycerol metabolism and its implication in virulence in Mycoplasma. FEMS Microbiol Rev. 2017;41(5):640–652.
  • Weissbach H, Resnick L, Brot N. Methionine sulfoxide reductases: history and cellular role in protecting against oxidative damage. Biochim Biophys Acta. 2005;1703(2):203–212.
  • Moskovitz J, Poston JM, Berlett BS, et al. Identification and characterization of a putative active site for peptide methionine sulfoxide reductase (MsrA) and its substrate stereospecificity. J Biol Chem. 2000;275(19):14167–14172.
  • Chuchue T, Tanboon W, Prapagdee B, et al. ohrR and ohr are the primary sensor/regulator and protective genes against organic hydroperoxide stress in Agrobacterium tumefaciens. J Bacteriol. 2006;188(3):842–851.
  • Zhang W, Baseman JB. Transcriptional response of Mycoplasma genitalium to osmotic stress. Microbiology (Reading). 2011;157(Pt 2):548–556.
  • McAuliffe L, Ellis RJ, Miles K, et al. Biofilm formation by mycoplasma species and its role in environmental persistence and survival. Microbiology (Reading). 2006;152(Pt 4):913–922.
  • Papayannopoulos V, Zychlinsky A. Nets: a new strategy for using old weapons. Trends Immunol. 2009;30(11):513–521.
  • Grinberg N, Elazar S, Rosenshine I, et al. Beta-Hydroxybutyrate abrogates formation of bovine neutrophil extracellular traps and bactericidal activity against mammary pathogenic Escherichia coli. Infect Immun. 2008;76(6):2802–2807.
  • Storisteanu DM, Pocock JM, Cowburn AS, et al. Evasion of neutrophil extracellular traps by respiratory pathogens. Am J Respir Cell Mol Biol. 2017;56(4):423–431. doi:10.1165/rcmb.2016-0193PS
  • Mitiku F, Hartley CA, Sansom FM, et al. The major membrane nuclease MnuA degrades neutrophil extracellular traps induced by Mycoplasma bovis. Vet Microbiol. 2018;218:13–19.
  • Andrés E, Martínez N, Planas A. Expression and characterization of a Mycoplasma genitalium glycosyltransferase in membrane glycolipid biosynthesis: potential target against mycoplasma infections. J Biol Chem. 2011;286(41):35367–35379.
  • Romero-García J, Biarnés X, Planas A. Essential mycoplasma glycolipid synthase adheres to the cell membrane by means of an amphipathic helix. Sci Rep. 2019;9(1):7085.
  • Andrés E, Biarnés X, Faijes M. Bacterial glycoglycerolipid synthases: processive and non-processive glycosyltransferases in mycoplasma. Biocatal Biotransform. 2012;30(3):274–287.
  • Klement ML, Ojemyr L, Tagscherer KE, et al. A processive lipid glycosyltransferase in the small human pathogen Mycoplasma pneumoniae: involvement in host immune response. Mol Microbiol. 2007;65(6):1444–1457.
  • Pereira SF, Goss L, Dworkin J. Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiol Mol Biol Rev. 2011;75(1):192–212.
  • Martinez MA, Das K, Saikolappan S, et al. A serine/threonine phosphatase encoded by MG_207 of Mycoplasma genitalium is critical for its virulence. BMC Microbiol. 2013;13(1):44.
  • Schmidl SR, Gronau K, Hames C, et al. The stability of cytadherence proteins in Mycoplasma pneumoniae requires activity of the protein kinase PrkC. Infect Immun. 2010;78(1):184–192. doi:10.1128/IAI.00958-09
  • Su HC, Hutchison CA 3rd, Giddings MC. Mapping phosphoproteins in Mycoplasma genitalium and Mycoplasma pneumoniae. BMC Microbiol. 2007;7(1):63.
  • Großhennig S, Ischebeck T, Gibhardt J, et al. Hydrogen sulfide is a novel potential virulence factor of Mycoplasma pneumoniae: characterization of the unusual cysteine desulfurase/desulfhydrase HapE. Mol Microbiol. 2016;100(1):42–54.
  • Schmidt JA, Browning GF, Markham PF. Mycoplasma hyopneumoniae p65 surface lipoprotein is a lipolytic enzyme with a preference for shorter-chain fatty acids. J Bacteriol. 2004;186(17):5790–5798.
  • Gates AE, Frasca S, Nyaoke A, et al. Comparative assessment of a metabolically attenuated Mycoplasma gallisepticum mutant as a live vaccine for the prevention of avian respiratory mycoplasmosis. Vaccine. 2008;26(16):2010–2019.
  • Napierala Mavedzenge S, Weiss HA. Association of Mycoplasma genitalium and HIV infection: a systematic review and meta-analysis. Aids. 2009;23(5):611–620.
  • Cohen CR, Nosek M, Meier A, et al. Mycoplasma genitalium infection and persistence in a cohort of female sex workers in Nairobi, Kenya. Sex Transm Dis. 2007;34(5):274–279. doi:10.1097/01.olq.0000237860.61298.54
  • Zella D, Curreli S, Benedetti F, et al. Mycoplasma promotes malignant transformation in vivo, and its DnaK, a bacterial chaperone protein, has broad oncogenic properties. Proc Natl Acad Sci USA. 2018;115(51):E12005–E12014.
  • Mavedzenge SN, Van Der Pol B, Weiss HA, et al. The association between Mycoplasma genitalium and HIV-1 acquisition in African women. Aids. 2012;26(5):617–624. doi:10.1097/QAD.0b013e32834ff690
  • Grace JT Jr, Horoszewicz JS, Stim TB, et al. Mycoplasmas (PPLO) and human leukemia and lymphoma. Cancer. 1965;18(10):1369–1376. doi:10.1002/1097-0142(196510)18:10<1369:AID-CNCR2820181022>3.0.CO;2-2
  • Paton GR, Jacobs JP, Perkins FT. Chromosome changes in human diploid-cell cultures infected with Mycoplasma. Nature. 1965;207(992):43–45.
  • Barykova YA, Logunov DY, Shmarov MM, et al. Association of Mycoplasma hominis infection with prostate cancer[j]. Oncotarget. 2011;2(4):289–297. doi:10.18632/oncotarget.256
  • Baracaldo R, Foltzer M, Patel R, et al. Empyema caused by Mycoplasma salivarium. J Clin Microbiol. 2012;50(5):1805–1806. doi:10.1128/JCM.06839-11
  • Idahl A, Lundin E, Elgh F, et al. Chlamydia trachomatis, Mycoplasma genitalium, Neisseria gonorrhoeae, human papillomavirus, and polyomavirus are not detectable in human tissue with epithelial ovarian cancer, borderline tumor, or benign conditions. Am J Obstet Gynecol. 2010;202(1):71.e1–6. doi:10.1016/j.ajog.2009.07.042
  • Idahl A, Lundin E, Jurstrand M, et al. Chlamydia trachomatis and Mycoplasma genitalium plasma antibodies in relation to epithelial ovarian tumors. Infect Dis Obstet Gynecol. 2011;2011:824627. doi:10.1155/2011/824627
  • Biernat-Sudolska M, Szostek S, Rojek-Zakrzewska D, et al. Concomitant infections with human papillomavirus and various mycoplasma and ureaplasma species in women with abnormal cervical cytology. Adv Med Sci. 2011;56(2):299–303. doi:10.2478/v10039-011-0028-9
  • Namiki K, Goodison S, Porvasnik S, et al. Persistent exposure to Mycoplasma induces malignant transformation of human prostate cells. PLoS One. 2009;4(9):e6872. doi:10.1371/journal.pone.0006872
  • Tsai S, Wear DJ, Shih JW, et al. Mycoplasmas and oncogenesis: persistent infection and multistage malignant transformation. Proc Natl Acad Sci USA. 1995;92(22):10197–10201.