1,269
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

The SWC4 subunit of the SWR1 chromatin remodeling complex is involved in varying virulence of Metarhizium brunneum isolates offering role of epigenetic regulation of pathogenicity

, , , , , , , & ORCID Icon show all
Pages 1252-1269 | Received 12 May 2022, Accepted 10 Jul 2022, Published online: 26 Jul 2022

References

  • Andreas V. Evolutionary ecology of parasitic fungi and their host insects. Fungal Ecol. 2019;38:12–20.
  • Roy HE, Steinkraus DC, Eilenberg J, et al. Bizarre interactions and endgames: entomopathogenic fungi and their arthropod hosts. Annu Rev Entomol. 2006;51(1):331–357.
  • Skinner M, Parker BL, Kim JS. Chapter 10 - Role of entomopathogenic fungi in integrated pest management. In: Abrol D, editor. Integrated pest management [Internet]. San Diego: Academic Press; 2014. p. 169–191. [cited 2021 Nov 25]. Available from: https://www.sciencedirect.com/science/article/pii/B9780123985293000117
  • van Lenteren JC, Bolckmans K, Köhl J, et al. Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl. 2018;63(1):39–59.
  • de Faria MR, Wraight SP. Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control. 2007;43(3):237–256.
  • Mukherjee K, Vilcinskas A. The entomopathogenic fungus Metarhizium robertsii communicates with the insect host Galleria mellonella during infection. Virulence. 2018;9(1):402–413.
  • Reingold V, Kottakota C, Birnbaum N, et al. Intraspecies variation of Metarhizium brunneum against the green peach aphid, Myzus persicae, provides insight into the complexity of disease progression. Pest Manag Sci. 2021;77(5):2557–2567. DOI:10.1002/ps.6294
  • Butt TM, Coates CJ, Dubovskiy IM, et al. Entomopathogenic Fungi: New Insights into Host-Pathogen Interactions. Adv Genet. 2016;94:307–364.
  • Vilcinskas A, Matha V, Götz P. Inhibition of phagocytic activity of plasmatocytes isolated from Galleria mellonella by entomogenous fungi and their secondary metabolites. J Insect Physiol. 1997;43(5):475–483.
  • Ment D, Gindin G, Samish M, et al. Comparative response of Metarhizium brunneum to the cuticles of susceptible and resistant hosts. Arch Insect Biochem Physiol. 2020;105(4):e21756.
  • Ment D, Gindin G, Soroker V, et al. Metarhizium anisopliae conidial responses to lipids from tick cuticle and tick mammalian host surface. J Invertebr Pathol. 2010;103(2):132–139.
  • Wang J, Lovett B, St Leger RJ. The secretome and chemistry of Metarhizium; a genus of entomopathogenic fungi. Fungal Ecology [Internet]. 2018. [cited 2019 Feb 26]; Available from: http://www.sciencedirect.com/science/article/pii/S175450481830120X
  • Wang C, St Leger RJ. Developmental and transcriptional responses to host and nonhost cuticles by the specific locust pathogen Metarhizium anisopliae var. acridum. Eukaryot Cell. 2005;4(5):937–947.
  • Ment D, Churchill ACL, Gindin G, et al. Resistant ticks inhibit Metarhizium infection prior to haemocoel invasion by reducing fungal viability on the cuticle surface. Environ Microbiol. 2012;14(6):1570–1583. DOI:10.1111/j.1462-2920.2012.02747.x
  • Chouvenc T, Su NY, Robert A. Cellular encapsulation in the eastern subterranean termite, Reticulitermes flavipes (Isoptera), against infection by the entomopathogenic fungus Metarhizium anisopliae. J Invertebr Pathol. 2009;101(3):234–241.
  • Dubovskiy IM, Whitten MMA, Kryukov VY, et al. More than a colour change: insect melanism, disease resistance and fecundity. Proc R Soc B. 2013;280(1763):20130584. DOI:10.1098/rspb.2013.0584
  • Dombrovsky A, Arthaud L, Ledger TN, et al. Profiling the repertoire of phenotypes influenced by environmental cues that occur during asexual reproduction. Genome Res. 2009;19(11):2052–2063.
  • Verhoeven KJ, Preite V. Epigenetic variation in asexually reproducing organisms. Evolution. 2014;68(3):644–655.
  • Mukherjee K, Dubovskiy I, Grizanova E, et al. Epigenetic mechanisms mediate the experimental evolution of resistance against parasitic fungi in the greater wax moth Galleria mellonella. Sci Rep. 2019;9(1):1626.
  • Gupta AP, Zhu L, Tripathi J, et al. Histone 4 lysine 8 acetylation regulates proliferation and host–pathogen interaction in Plasmodium falciparum. Epigenet Chromatin. 2017;10(1):40.
  • Vilcinskas A. The role of epigenetics in host–parasite coevolution: lessons from the model host insects Galleria mellonella and Tribolium castaneum. Zoology. 2016;119(4):273–280.
  • Breiling A, Lyko F. Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenet Chromatin. 2015;8(1):24.
  • Mondo SJ, Dannebaum RO, Kuo RC, et al. Widespread adenine N6-methylation of active genes in fungi. Nat Genet. 2017;49(6):964. DOI:10.1038/ng.3859
  • Fu Y, Dominissini D, Rechavi G, et al. Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet. 2014;15(5):293–306.
  • Low DA, Weyand NJ, Mahan MJ. Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect Immun. 2001;69(12):7197.
  • Pedrini N. Molecular interactions between entomopathogenic fungi (Hypocreales) and their insect host: perspectives from stressful cuticle and hemolymph battlefields and the potential of dual RNA sequencing for future studies. Fungal Biol. 2018;122(6):538–545.
  • Woo RM, Park MG, Choi JY, et al. Insecticidal and insect growth regulatory activities of secondary metabolites from entomopathogenic fungi, Lecanicillium attenuatum. J Appl Entomol. 2020;144(7):655–663. DOI:10.1111/jen.12788
  • Ortiz-Urquiza A, Keyhani NO. Action on the surface: entomopathogenic fungi versus the insect cuticle. Insects. 2013;4(3):357–374.
  • Gibson DM, Donzelli BGG, Krasnoff SB, et al. Discovering the secondary metabolite potential encoded within entomopathogenic fungi. Nat Prod Rep. 2014;31(10):1287–1305.
  • Pfannenstiel BT, Keller NP. On top of biosynthetic gene clusters: how epigenetic machinery influences secondary metabolism in fungi. Biotechnol Adv. 2019;37(6):107345.
  • Zhang L, Fasoyin OE, Molnár I, et al. Secondary metabolites from hypocrealean entomopathogenic fungi: novel bioactive compounds. Nat Prod Rep. 2020;37(9):1181–1206.
  • Chen Z, Ponts N. H2A.Z and chromatin remodelling complexes: a focus on fungi. Crit Rev Microbiol. 2020;46(3):321–337.
  • Cai Q, Tian L, Xie JT, et al. Contributions of a histone deacetylase (SirT2/hst2) to Beauveria bassiana growth, development, and virulence. J Fungi. 2022;8(3):236.
  • Atanasoff-Kardjalieff AK, Studt L. Secondary metabolite gene regulation in mycotoxigenic Fusarium species: a focus on chromatin. Toxins (Basel). 2022;14(2):96.
  • Aslam M, Fakher B, Jakada BH, et al. SWR1 chromatin remodeling complex: a key transcriptional regulator in plants. Cells. 2019;8(12):1621.
  • Ruhl DD, Jin J, Cai Y, et al. Purification of a human SRCAP complex that remodels chromatin by incorporating the histone variant H2A.Z into nucleosomes. Biochemistry. 2006;45(17):5671–5677. DOI:10.1021/bi060043d
  • Baverstock J, Roy HE, Pell JK. Entomopathogenic fungi and insect behaviour: from unsuspecting hosts to targeted vectors. In: Roy H, F Vega, D Chandler, M Goettel, J Pell, E Wajnberg, editors. The ecology of fungal entomopathogens [Internet]. Dordrecht: Springer Netherlands; 2010. p. 89–102. Available from 10.1007/978-90-481-3966-8_7.
  • Araújo JPM, Hughes DP. Diversity of entomopathogenic fungi: which groups conquered the insect body? Adv Genet. 2016;94:1–39.
  • Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics. 2010;26(5):589–595.
  • Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. DOI:10.1093/bioinformatics/btp352
  • DePristo MA, Banks E, Poplin R, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–498. DOI:10.1038/ng.806
  • Cingolani P, Platts A, Wang LL, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly (Austin). 2012;6(2):80–92. DOI:10.4161/fly.19695
  • Prjibelski A, Antipov D, Meleshko D, et al. Using SPAdes De Novo assembler. Curr Protoc Bioinformatics. 2020;70(1):e102.
  • Hoff KJ, Stanke M. Predicting genes in single genomes with AUGUSTUS. Curr Protoc Bioinformatics. 2019;65(1):e57.
  • Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60.
  • Conesa A, Götz S, García-Gómez JM, et al. Blast2go: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–3676.
  • Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16(1):157.
  • Reingold V, Luria N, Robichon A, et al. Adenine methylation may contribute to endosymbiont selection in a clonal aphid population. BMC Genomics. 2014;15(1):999.
  • Fang W, Bidochka MJ. Expression of genes involved in germination, conidiogenesis and pathogenesis in Metarhizium anisopliae using quantitative real-time RT-PCR. Mycol Res. 2006;110(10):1165–1171.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25(4):402–408.
  • Davis KA, Sampson JK, Panaccione DG. Genetic reprogramming of the ergot alkaloid pathway of Metarhizium brunneum. Appl Environ Microbiol. 2020;86(19). DOI:10.1128/AEM.01251-20
  • Liu X, Homma A, Sayadi J, et al. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system. Sci Rep. 2016;6:19675.
  • Freeman S, Sharon M, Dori-Bachash M, et al. Symbiotic association of three fungal species throughout the life cycle of the ambrosia beetle Euwallacea nr. fornicatus. Symbiosis. 2016;68(1–3):115–128. DOI:10.1007/s13199-015-0356-9
  • De Filippis A, Nocera FP, Tafuri S, et al. Antimicrobial activity of harzianic acid against Staphylococcus pseudintermedius. Nat Prod Res. 2021;35(23):5440–5445. DOI:10.1080/14786419.2020.1779714
  • Staropoli A, Vassetti A, Salvatore MM, et al. Improvement of nutraceutical value of parsley leaves (Petroselinum crispum) upon field applications of beneficial microorganisms. Horticulturae. 2021;7(9):281. DOI:10.3390/horticulturae7090281
  • Oliveros JV. An interactive tool for comparing lists with Venn’s diagrams [Internet]. 2007 [cited 2022 Mar 13]. Available from: https://bioinfogp.cnb.csic.es/tools/venny/index.html
  • Pyt L, Lévesque N, Kobor MS. NuA4 and SWR1-C: two chromatin-modifying complexes with overlapping functions and components. Biochem Cell Biol. 2009;87(5):799–815.
  • Molnár I, Gibson DM, Krasnoff SB. Secondary metabolites from entomopathogenic Hypocrealean fungi. Nat Prod Rep. 2010;27(9):1241–1275.
  • Kershaw MJ, Moorhouse ER, Bateman R, et al. The role of destruxins in the pathogenicity of metarhizium anisopliae for three species of insect. J Invertebr Pathol. 1999;74(3):213–223.
  • Krasnoff SB, Keresztes I, Gillilan RE, et al. Serinocyclins a and B, cyclic heptapeptides from Metarhizium anisopliae. J Nat Prod. 2007;70(12):1919–1924. DOI:10.1021/np070407i
  • Chen C, Lian B, Hu J, et al. Genome comparison of two Magnaporthe oryzae field isolates reveals genome variations and potential virulence effectors. BMC Genomics. 2013;14(1):887. DOI:10.1186/1471-2164-14-887
  • Chen X, Zhang X, Zhu P, et al. A single nucleotide mutation in adenylate cyclase affects vegetative growth, sclerotial formation and virulence of Botrytis cinerea. Int J Mol Sci. 2020;21(8):E2912. DOI:10.3390/ijms21082912
  • Wray GA. The evolutionary significance of cis-regulatory mutations. Nat Rev Genet. 2007;8(3):206–216.
  • Gao BJ, Mou YN, Tong SM, et al. Subtilisin-Like Pr1 proteases marking the evolution of pathogenicity in a wide-spectrum insect-pathogenic fungus. Virulence. 2020;11(1):365–380.
  • Bidochka MJ, Melzer MJ. Genetic polymorphisms in three subtilisin-like protease isoforms (Pr1a, Pr1B, and Pr1C) from Metarhizium strains. Can J Microbiol. 2011 Feb 10[cited 2022 Feb 16]; Available from https://cdnsciencepub.com/doi/abs/10.1139/w00-112
  • Santi L, Beys da Silva WO, Berger M, et al. Conidial surface proteins of Metarhizium anisopliae: source of activities related with toxic effects, host penetration and pathogenesis. Toxicon. 2010;55(4):874–880. DOI:10.1016/j.toxicon.2009.12.012
  • Li CY, Chung YM, Wu YC, et al. Natural products development under epigenetic modulation in fungi. Phytochem Rev. 2020;19(6):1323–1340.
  • Bochtler M, Fernandes H. DNA adenine methylation in eukaryotes: enzymatic mark or a form of DNA damage? Bioessays. 2021;43(3):2000243.
  • Wang Y, Sheng Y, Liu Y et al. A distinct class of eukaryotic MT-A70 methyltransferases maintain symmetric DNA N6-adenine methylation at the ApT dinucleotides as an epigenetic mark associated with transcription. Nucleic Acids Res. 2019;47(22):11771–11789. DOI:10.1093/nar/gkz1053
  • Fu Y, Luo GZ, Chen K, et al. N6-Methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell. 2015;161(4):879–892. DOI:10.1016/j.cell.2015.04.010
  • Luo GZ, Hao Z, Luo L, et al. N6-Methyldeoxyadenosine directs nucleosome positioning in Tetrahymena DNA. Genome Biol. 2018;19(1):200. DOI:10.1186/s13059-018-1573-3
  • Miciałkiewicz A, Chełstowska A. The essential function of Swc4p - a protein shared by two chromatin-modifying complexes of the yeast Saccharomyces cerevisiae - resides within its N-terminal part. Acta Biochim Pol. 2008;55(3):603–612.
  • Gómez-Zambrano Á, Crevillén P, Franco-Zorrilla JM, et al. Arabidopsis SWC4 binds DNA and recruits the SWR1 complex to modulate histone H2A.Z deposition at key regulatory genes. Mol Plant. 2018;11(6):815–832. DOI:10.1016/j.molp.2018.03.014
  • Salas-Santiago B, Lopes JM. Saccharomyces cerevisiae essential genes with an opi− phenotype. G3 genes|genomes|genetics. 2014;4(4):761–767. DOI:10.1534/g3.113.010140.
  • Giaever G, Chu AM, Ni L, et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature. 2002;418(6896):387–391. DOI:10.1038/nature00935
  • Xu C, Zhang X, Qian Y et al. A high-throughput gene disruption methodology for the entomopathogenic fungus Metarhizium robertsii. PLoS One. 2014;9(9):e107657. DOI:10.1371/journal.pone.0107657
  • Albright JC, Henke MT, Soukup AA, et al. Large-scale metabolomics reveals a complex response of Aspergillus nidulans to epigenetic perturbation. ACS Chem Biol. 2015;10(6):1535–1541. DOI:10.1021/acschembio.5b00025
  • Wang X, Zhu W, Chang P, et al. Merge and separation of NuA4 and SWR1 complexes control cell fate plasticity in Candida albicans. Cell Discov. 2018;4(1):45.