1,231
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

Comparative transcriptomic analysis reveal genes involved in the pathogenicity increase of Streptococcus suis epidemic strains

, , , , , & show all
Pages 1455-1470 | Received 30 May 2022, Accepted 18 Aug 2022, Published online: 28 Aug 2022

References

  • Goyette-Desjardins G, Auger JP, Xu J, et al. Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerging Microbes & Infections. 2014 Jun;3(6):e45. DOI:10.1038/emi.2014.45
  • Huong VT, Ha N, Huy NT, et al. Epidemiology, clinical manifestations, and outcomes of Streptococcus suis infection in humans. Emerg Infect Dis. 2014 Jul;20(7):1105–1114. DOI:10.3201/eid2007.131594
  • Yu H, Jing H, Chen Z, et al. Human Streptococcus suis outbreak, Sichuan, China. Emerg Infect Dis. 2006 Jun;12(6):914–920. DOI:10.3201/eid1206.051194
  • Ye C, Zhu X, Jing H, et al. Streptococcus suis sequence type 7 outbreak, Sichuan, China. Emerg Infect Dis. 2006 Aug;12(8):1203–1208. DOI:10.3201/eid1708.060232
  • Ye C, Zheng H, Zhang J, et al. Clinical, experimental, and genomic differences between intermediately pathogenic, highly pathogenic, and epidemic Streptococcus suis. J Infect Dis. 2009 Jan 1 199;(1)97–107. 10.1086/594370
  • Roodsant TJ, Van Der Putten BCL, Tamminga SM, et al. Identification of Streptococcus suis putative zoonotic virulence factors: a systematic review and genomic meta-analysis. Virulence. 2021 Dec;12(1):2787–2797. DOI:10.1080/21505594.2021.1985760
  • Feng Y, Zhang H, Wu Z, et al. Streptococcus suis infection: an emerging/reemerging challenge of bacterial infectious diseases? Virulence. 2014 May 15 5;(4)477–497. 10.4161/viru.28595
  • Fittipaldi N, Segura M, Grenier D, et al. Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiol. 2012 Feb;7(2):259–279. DOI:10.2217/fmb.11.149
  • Dutkiewicz J, Zajac V, Sroka J, et al. Streptococcus suis: a re-emerging pathogen associated with occupational exposure to pigs or pork products. Part II - Pathogenesis. Ann Agric Environ Med. 2018 Mar 14 25;(1)186–203. 10.26444/aaem/85651
  • Segura M, Calzas C, Grenier D, et al. Initial steps of the pathogenesis of the infection caused by Streptococcus suis: fighting against nonspecific defenses. Febs Lett. 2016 Nov;590(21):3772–3799. DOI:10.1002/1873-3468.12364
  • Arenas J, Bossers-de Vries R, Harders-Westerveen J, et al. In vivo transcriptomes of Streptococcus suis reveal genes required for niche-specific adaptation and pathogenesis. Virulence. 2019 Dec;10(1):334–351. DOI:10.1080/21505594.2019.1599669
  • Schwerk C, Adam R, Borkowski J, et al. In vitro transcriptome analysis of porcine choroid plexus epithelial cells in response to Streptococcus suis: release of pro-inflammatory cytokines and chemokines. Microbes Infect. 2011 Oct;13(11):953–962. DOI:10.1016/j.micinf.2011.05.012
  • Liu M, Tan C, Fang L, et al. Microarray analyses of THP-1 cells infected with Streptococcus suis serotype 2. Vet Microbiol. 2011 May 12 150;(1–2)126–131. 10.1016/j.vetmic.2010.12.014
  • de Greeff A, Benga L, Wichgers Schreur PJ, et al. Involvement of NF-kappaB and MAP-kinases in the transcriptional response of alveolar macrophages to Streptococcus suis. Vet Microbiol. 2010 Feb 24 141;(1–2)59–67. 10.1016/j.vetmic.2009.07.031
  • Lauer AN, Scholtysik R, Beineke A, et al. A comparative transcriptome analysis of human and porcine choroid plexus cells in response to Streptococcus suis serotype 2 infection points to a role of hypoxia. Front Cell Infect Microbiol. 2021;11:639620.
  • Zheng H, Luo X, Segura M, et al. The role of toll-like receptors in the pathogenesis of Streptococcus suis. Vet Microbiol. 2012 Apr 23 156;(1–2)147–156. 10.1016/j.vetmic.2011.10.014
  • Dominguez-Punaro Mde L, Segura M, Contreras I, et al. In vitro characterization of the microglial inflammatory response to Streptococcus suis, an important emerging zoonotic agent of meningitis. Infect Immun. 2010 Dec;78(12):5074–5085. DOI:10.1128/IAI.00698-10
  • Zheng H, Sun H, Dominguez-Punaro Mde L, et al. Evaluation of the pathogenesis of meningitis caused by Streptococcus suis sequence type 7 using the infection of BV2 microglial cells. J Med Microbiol. 2013 Mar;62(Pt 3):360–368. DOI:10.1099/jmm.0.046698-0
  • Robinson MD, McCarthy DJ, Gk S. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010 Jan 1;26(1):139–140. DOI:10.1093/bioinformatics/btp616
  • Takamatsu D, Osaki M, Sekizaki T. Thermosensitive suicide vectors for gene replacement in Streptococcus suis. Plasmid. 2001 Sep;46(2):140–148.
  • Wu Z, Zhang W, Lu Y, et al. Transcriptome profiling of zebrafish infected with Streptococcus suis. Microb Pathog. 2010 May;48(5):178–187. DOI:10.1016/j.micpath.2010.02.007
  • Huang W, Wang M, Hao H, et al. Genomic epidemiological investigation of a Streptococcus suis outbreak in Guangxi, China, 2016. Infect Genet Evol. 2019 Mar;68:249–252.
  • Zheng X, Zheng H, Lan R, et al. Identification of genes and genomic islands correlated with high pathogenicity in Streptococcus suis using whole genome tiling microarrays. PLoS One. 2011 Mar 30 6;(3)e17987. 10.1371/journal.pone.0017987
  • Thanbichler M, Neuhierl B, Bock A. S-Methylmethionine metabolism in Escherichia coli. J Bacteriol. 1999 Jan;181(2):662–665.
  • de Greeff A, Buys H, Wells JM, et al. A naturally occurring nucleotide polymorphism in the orf2/folc promoter is associated with Streptococcus suis virulence. Bmc Microbiol. 2014 Nov 12 14;(1)264. 10.1186/s12866-014-0264-9
  • Smith HE, Buijs H, Wisselink HJ, et al. Selection of virulence-associated determinants of Streptococcus suis serotype 2 by in vivo complementation. Infect Immun. 2001 Mar;69(3):1961–1966. DOI:10.1128/IAI.69.3.1961-1966.2001
  • Zheng H, Punaro MC, Segura M, et al. Toll-Like receptor 2 is partially involved in the activation of murine astrocytes by Streptococcus suis, an important zoonotic agent of meningitis. J Neuroimmunol. 2011 May;234(1–2):71–83. DOI:10.1016/j.jneuroim.2011.02.005
  • Wang X, Sun J, Bian C, et al. The population structure, antimicrobial resistance, and pathogenicity of Streptococcus suis cps31. Vet Microbiol. 2021 Jun 12;259:109149. DOI:10.1016/j.vetmic.2021.109149
  • Zaccaria E, Cao R, Wells JM, et al. A zebrafish larval model to assess virulence of porcine Streptococcus suis Strains. PLoS One. 2016;11(3):e0151623. DOI:10.1371/journal.pone.0151623
  • Neely MN, Pfeifer JD, Caparon M Streptococcus-Zebrafish model of bacterial pathogenesis. Infect Immun. 2002 Jul;70(7):3904–3914.
  • Zhang D, Du N, Ma S, et al. In vitro transcriptome analysis of two Chinese isolates of Streptococcus suis serotype 2. Genomics Proteomics & Bioinformatics. 2014 Dec;12(6):266–275. DOI:10.1016/j.gpb.2014.11.001
  • Xu J, Fu S, Liu M, et al. The two-component system NisK/nisr contributes to the virulence of Streptococcus suis serotype 2. Microbiol Res. 2014 Jul-Aug;169(7–8):541–546. DOI:10.1016/j.micres.2013.11.002
  • Zhao Y, Liu G, Li S, et al. Role of a type IV-like secretion system of Streptococcus suis 2 in the development of streptococcal toxic shock syndrome. J Infect Dis. 2011 Jul 15 204;(2)274–281. 10.1093/infdis/jir261
  • Li M, Wang C, Feng Y, et al. SalK/salr, a two-component signal transduction system, is essential for full virulence of highly invasive Streptococcus suis serotype 2. PLoS One. 2008;3(5):e2080. DOI:10.1371/journal.pone.0002080
  • Yoshida Y, Negishi M, Nakano Y. Homocysteine biosynthesis pathways of Streptococcus anginosus. FEMS microbiology letters. 2003 Apr 25; 221(2):277–284. 10.1016/S0378-1097(03)00215-5
  • Yoshida Y, Nakano Y, Amano A, et al. Lcd from Streptococcus anginosus encodes a C-S lyase with alpha,beta-elimination activity that degrades L-cysteine. Microbiology (Reading). 2002 Dec;148(Pt 12):3961–3970. DOI:10.1099/00221287-148-12-3961
  • Basavanna S, Chimalapati S, Maqbool A, et al. The effects of methionine acquisition and synthesis on Streptococcus pneumoniae growth and virulence. PLoS One. 2013;8(1):e49638. DOI:10.1371/journal.pone.0049638
  • Hullo MF, Auger S, Dassa E, et al. The metNPQ operon of Bacillus subtilis encodes an ABC permease transporting methionine sulfoxide, D- and L-methionine. Res Microbiol. 2004 Mar;155(2):80–86. DOI:10.1016/j.resmic.2003.11.008
  • Merlin C, Gardiner G, Durand S, et al. The Escherichia coli metD locus encodes an ABC transporter which includes Abc (MetN,YaeE (MetI) and YaeC (MetQ). J Bacteriol. 2002 Oct;184(19):5513–5517.
  • Pei X, Liu J, Liu M, et al. Quantitative proteomics revealed modulation of macrophages by MetQ gene of Streptococcus suis serotype 2. Amb Express. 2020 Oct 30 10;(1)195. 10.1186/s13568-020-01131-2
  • Ferla MP, Patrick WM. Bacterial methionine biosynthesis. Microbiology (Reading). 2014 Aug;160(Pt 8):1571–1584.
  • Weissbach H, Brot N. Regulation of methionine synthesis in Escherichia coli. Mol Microbiol. 1991 Jul;5(7):1593–1597.
  • Saint-Girons I, Parsot C, Zakin MM, et al. Methionine biosynthesis in Enterobacteriaceae: biochemical, regulatory, and evolutionary aspects. Crc Crit Rev Biochem. 1988;23(1):S1–42. DOI:10.3109/10409238809083374
  • Blanco J, Coque JJ, Martin JF. The folate branch of the methionine biosynthesis pathway in Streptomyces lividans: disruption of the 5,10-methylenetetrahydrofolate reductase gene leads to methionine auxotrophy. J Bacteriol. 1998 Mar;180(6):1586–1591.
  • Ying J, Wang H, Bao B, et al. Molecular variation and horizontal gene transfer of the homocysteine methyltransferase gene mmuM and its distribution in clinical pathogens. Int J Biol Sci. 2015;11(1):11–21. DOI:10.7150/ijbs.10320
  • Kozak M. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol Rev. 1983 Mar;47(1):1–45.
  • Kitajima T, Chiba Y, Jigami Y. Mutation of high-affinity methionine permease contributes to selenomethionyl protein production in Saccharomyces cerevisiae. Appl Environ Microbiol. 2010 Oct;76(19):6351–6359.
  • Nixon MR, Saionz KW, Koo MS, et al. Folate pathway disruption leads to critical disruption of methionine derivatives in Mycobacterium tuberculosis. Chem Biol. 2014 Jul 17 21;(7)819–830. 10.1016/j.chembiol.2014.04.009
  • Yuan ZZ, Yan XJ, Zhang AD, et al. Molecular mechanism by which surface antigen HP0197 mediates host cell attachment in the pathogenic bacteria Streptococcus suis. J Biol Chem. 2013 Jan 11 288;(2)956–963. 10.1074/jbc.M112.388686
  • Chen B, Zhang A, Li R, et al. Evaluation of the protective efficacy of a newly identified immunogenic protein, HP0272, of Streptococcus suis. Fems Microbiol Lett. 2010 Jun;307(1):12–18. DOI:10.1111/j.1574-6968.2010.01944.x
  • Tan C, Liu M, Li J, et al. SsPep contributes to the virulence of Streptococcus suis. Microb Pathog. 2011 Nov;51(5):319–324. DOI:10.1016/j.micpath.2011.07.008
  • Li J, Tan C, Zhou Y, et al. The two-component regulatory system CiaRH contributes to the virulence of Streptococcus suis 2. Vet Microbiol. 2011 Feb 24 148;(1)99–104. 10.1016/j.vetmic.2010.08.005
  • Shao J, Zhang W, Wu Z, et al. The truncated major pilin subunit Sbp2 of the srtBCD pilus cluster still contributes to Streptococcus suis pathogenesis in the absence of pilus shaft. Curr Microbiol. 2014 Nov;69(5):703–707. DOI:10.1007/s00284-014-0642-4
  • Okwumabua O, Chinnapapakkagari S. Identification of the gene encoding a 38-kilodalton immunogenic and protective antigen of Streptococcus suis. Clin Diagn Lab Immunol. 2005 Apr;12(4):484–490.
  • Okwumabua O, Persaud JS, Reddy PG. Cloning and characterization of the gene encoding the glutamate dehydrogenase of Streptococcus suis serotype 2. Clin Diagn Lab Immunol. 2001 Mar;8(2):251–257.
  • Zhang A, Mu X, Chen B, et al. IgA1 protease contributes to the virulence of Streptococcus suis. Vet Microbiol. 2011 Mar 24 148;(2–4)436–439. 10.1016/j.vetmic.2010.09.027
  • Li Q, Fei X, Zhang Y, et al. The biological role of MutT in the pathogenesis of the zoonotic pathogen Streptococcus suis serotype 2. Virulence. 2021 Dec;12(1):1538–1549. DOI:10.1080/21505594.2021.1936770
  • Li Q, Zhang Y, Dechao D, et al. Characterization and functional analysis of PnuC that is involved in the oxidative stress tolerance and virulence of Streptococcus suis serotype 2. Vet Microbiol. 2018 Mar;216:198–206.
  • Wang Q, Hassan BH, Lou N, et al. Functional definition of NrtR, a remnant regulator of NAD(+) homeostasis in the zoonotic pathogen Streptococcus suis. Faseb J. 2019 May;33(5):6055–6068. DOI:10.1096/fj.201802179RR