1,586
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Nicotinamide potentiates amphotericin B activity against Candida albicans

, , , &
Pages 1533-1542 | Received 14 Mar 2022, Accepted 27 Aug 2022, Published online: 06 Sep 2022

References

  • Sardi JC, Scorzoni L, Bernardi T, et al. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol. 2013;62(1):10–24. DOI:10.1099/jmm.0.045054-0.
  • Oura M, Sternberg TH, Wright ET. A new antifungal antibiotic, amphotericin B. Antibiot Annu. 1955;3:566–573.
  • Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoam de Micología. 2009;26(4):223–227.
  • Chen AC, Martin AJ, Choy B, et al. A phase 3 randomized trial of nicotinamide for skin cancer chemoprevention. N Engl J Med. 2015;373(17):1618–1626. DOI:10.1056/NEJMoa1506197.
  • Murray MF. Nicotinamide: an oral antimicrobial agent with activity against both Mycobacterium tuberculosis and human immunodeficiency virus. Clin Infect Dis. 2003;36(4):453–460.
  • Sereno D, Alegre AM, Silvestre R, et al. In vitro antileishmanial activity of nicotinamide. Antimicrob Agents Chemother. 2005;49(2):808–812. DOI:10.1128/AAC.49.2.808-812.2005.
  • Gazanion E, Vergnes B, Seveno M, et al. In vitro activity of nicotinamide/antil- eishmanial drug combinations. Parasitol Int. 2011;60(1):19–24. DOI:10.1016/j.parint.2010.09.005.
  • Prusty D, Mehra P, Srivastava S, et al. Nicotinamide inhibits Plasmodium falciparum Sir2 activity in vitro and parasite growth. FEMS Microbiol Lett. 2008;282(2):266–272. DOI:10.1111/j.1574-6968.2008.01135.x.
  • Soares MB, Silva CV, Bastos TM, et al. Anti-Trypanosoma cruzi activity of nicotinamide. Acta Trop. 2012;122(2):224–229. DOI:10.1016/j.actatropica.2012.01.001.
  • Xing XR, Liao ZB, Tan F, et al. Effect of nicotinamide against Candida albicans. Front Microbiol. 2019;10:595.
  • Wurtele H, Tsao S, Lepine G, et al. Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy. Nat Med. 2010;16(7):774–780. DOI:10.1038/nm.2175.
  • Quan H, Cao YY, Xu Z, et al. Potent in vitro synergism of fluconazole and berberine chloride against clinical isolates of Candida albicans resistant to fluconazole. Antimicrob Agents Chemother. 2006;50(3):1096–1099. DOI:10.1128/AAC.50.3.1096-1099.2006.
  • Ramage G, Vande Walle K, Wickes BL, et al. Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother. 2001;45(9):2475–2479. DOI:10.1128/AAC.45.9.2475-2479.2001.
  • Nobile CJ, Andes DR, Nett JE, et al. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2006;2(7):e63. DOI:10.1371/journal.ppat.0020063.
  • Li DD, Chai D, Huang XW, et al. Potent in vitro synergism of fluconazole and osthole against fluconazole-resistant Candida albicans. Antimicrob Agents Chemother. 2017;61(8):e00436–17. DOI:10.1128/AAC.00436-17.
  • Yan Y, Tan F, Miao H, et al. Effect of shikonin against Candida albicans biofilms. Front Microbiol. 2019;10:1085.
  • Liao ZB, Zhu ZY, Li L, et al. Metabonomics on Candida albicans indicate the excessive H3K56ac is involved in the antifungal activity of Shikonin. Emerg Microbes Infect. 2019;8(1):1243–1253. DOI:10.1080/22221751.2019.1657362.
  • Celic I, Masumoto H, Griffith WP, et al. The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation. Curr Biol. 2006;16(13):1280. DOI:10.1016/j.cub.2006.06.023.
  • Mei Y, Jiang T, Zou Y, et al. FDA approved drug library screening identifies robenidine as a repositionable antifungal. Front Microbiol. 2020;11:996.
  • Sokol-Anderson MJE, Sligh JS, Elberg J, et al. Role of cell defense against oxidative damage in the resistance of Candida albicans to the killing effect of amphotericin B. Antimicrob Agents Chemother. 1988;32(5):702–705. DOI:10.1128/AAC.32.5.702.
  • Sokol-Anderson ML, Brajtburg J, Medoff G. Amphotericin B-induced oxidative damage and killing of C. albicans. J Infect Dis. 1986;154(1):76–83.
  • Fernández-García R, Muñoz-García JC, Wallace M, et al. Self-Assembling, supramolecular chemistry and pharmacology of amphotericin B: poly-aggregates, oligomers and monomers. J Control Release. 2022;341:716–732.
  • Moye-Rowley W. Regulation of the transcriptional response to oxidative stress in fungi: similarities and differences. Eukaryot Cell. 2003;2(3):381–389.
  • Wang Y, Cao Y, Jia X, et al. Cap1p is involved in multiple pathways of oxidative stress response in Candida albicans. Free Rad Biol Med. 2006;40(7):1201–1209. DOI:10.1016/j.freeradbiomed.2005.11.019.
  • Hwang CS, Baek YU, Yim HS, et al. Protective roles of mitochondrial manganese-containing superoxide dismutase against various stresses inCandida albicans. Yeast. 2003;20(11):929–941. DOI:10.1002/yea.1004.
  • Marmorstein R, Zhou M. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol. 2014;6(7):a018762.
  • Sellam A, Askew C, Epp E, et al. Genome-Wide mapping of the coactivator Ada2p yields insight into the functional roles of SAGA/ADA complex in Candida albicans. Mol Biol Cell. 2009;20(9):2389–2400. DOI:10.1091/mbc.e08-11-1093.
  • Dahlin JL, Chen X, Walters MA, et al. Histone modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: lessons learned from Rtt109 histone acetyltransferases. Crit Rev Biochem Mol Biol. 2015;50:31–53.
  • da Rosa L, Boyartchuk VL, Zhu LJ, et al. Histone acetyltransferase Rtt109 is required for Candida albicans pathogenesis. Proc Natl Acad Sci USA. 2010;107(4):1594–1599. DOI:10.1073/pnas.0912427107.