2,298
Views
3
CrossRef citations to date
0
Altmetric
Review

Two-component systems regulate bacterial virulence in response to the host gastrointestinal environment and metabolic cues

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1666-1680 | Received 05 Apr 2022, Accepted 18 Sep 2022, Published online: 24 Sep 2022

References

  • Skerker JM, Prasol MS, Perchuk BS, et al. Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol. 2005;3(10):e334. DOI:10.1371/journal.pbio.0030334
  • Li YH, Lau PCY, Tang N, et al. Novel two-component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans. J Bacteriol. 2002;184(22):6333–6342. DOI:10.1128/JB.184.22.6333-6342.2002
  • Beier D, Gross R. Regulation of bacterial virulence by two-component systems. Curr Opin Microbiol. 2006;9(2):143–152.
  • Mitrophanov AY, Groisman EA. Signal integration in bacterial two-component regulatory systems. Genes Dev. 2008;22(19):2601–2611.
  • Nowicki EM, O’Brien JP, Brodbelt JS, et al. Extracellular zinc induces phosphoethanolamine addition to Pseudomonas aeruginosa lipid a via the ColRS two-component system. Mol Microbiol. 2015;97(1):166–178. DOI:10.1111/mmi.13018
  • Affandi T, McEvoy MM. Mechanism of metal ion-induced activation of a two-component sensor kinase. Biochem J. 2019;476(1):115–135.
  • Rajput A, et al. Pangenome analytics reveal two-component systems as conserved targets in ESKAPEE Pathogens. mSystems. 2021;6(1). DOI:10.1128/mSystems.00981-20.
  • Tran-Winkler HJ, Love JF, Gryllos I, et al. Signal transduction through CsrRS confers an invasive phenotype in group a Streptococcus. PLoS Pathog. 2011;7(10):e1002361. DOI:10.1371/journal.ppat.1002361
  • Soncini FC, Vescovi EG, Groisman EA. Transcriptional autoregulation of the Salmonella typhimurium phoPQ operon. J Bacteriol. 1995;177(15):4364–4371.
  • Zhou D, Han Y, Qin L, et al. Transcriptome analysis of the Mg2+-responsive PhoP regulator in Yersinia pestis. FEMS Microbiol Lett. 2005;250(1):85–95. DOI:10.1016/j.femsle.2005.06.053
  • Huang HH, Wu B-K, Li L-H, et al. Role of the PhoPQ two-component regulatory system in the β-lactam resistance of Stenotrophomonas maltophilia. J Antimicrob Chemother. 2021;76(6):1480–1486. DOI:10.1093/jac/dkab059
  • Guckes KR, Breland EJ, Zhang EW, et al. Signaling by two-component system noncognate partners promotes intrinsic tolerance to polymyxin B in uropathogenic Escherichia coli. Sci Signal. 2017;10(461). DOI:10.1126/scisignal.aag1775.
  • Shprung T, et al. Opposing effects of PhoPQ and PmrAB on the properties of Salmonella enterica serovar Typhimurium: implications on resistance to antimicrobial peptides. Biochemistry. 2021;60(39):2943–2955. DOI:10.1021/acs.biochem.1c00287
  • Sonawane AM, Singh B, Rohm KH. The AauR-AauS two-component system regulates uptake and metabolism of acidic amino acids in Pseudomonas putida. Appl Environ Microbiol. 2006;72(10):6569–6577.
  • Xie Y, Liu W, Shao X, et al. Signal transduction schemes in Pseudomonas syringae. Comput Struct Biotechnol J. 2020;18:3415–3424.
  • Fernandez M, Porcel M, de la Torre J, et al. Analysis of the pathogenic potential of nosocomial Pseudomonas putida strains. Front Microbiol. 2015;6:871.
  • Kumar A, Sperandio V. Indole signaling at the host-microbiota-pathogen interface. Mbio. 2019;10(3). DOI:10.1128/mBio.01031-19
  • Ellermann M, Pacheco AR, Jimenez AG, et al. Endocannabinoids inhibit the induction of virulence in enteric pathogens. Cell. 2020;183(3):650–665 e15. DOI:10.1016/j.cell.2020.09.022
  • van Hoek ML, Hoang KV, Gunn JS. Two-component systems in francisella species. Front Cell Infect Microbiol. 2019;9:198.
  • Clarke MB, Hughes DT, Zhu C, et al. The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci U S A. 2006;103(27):10420–10425. DOI:10.1073/pnas.0604343103
  • Weigel WA, Demuth DR. QseBC, a two-component bacterial adrenergic receptor and global regulator of virulence in enterobacteriaceae and pasteurellaceae. Mol Oral Microbiol. 2016;31(5):379–397.
  • Miller AL, et al. Nitrate is an environmental cue in the gut for Salmonella enterica serovar Typhimurium biofilm dispersal through curli repression and flagellum activation via cyclic-di-GMP signaling. mBio: 2022. p e0288621.
  • Tyson KL, Cole JA, Busby SJ. Nitrite and nitrate regulation at the promoters of two Escherichia coli operons encoding nitrite reductase: identification of common target heptamers for both NarP- and NarL-dependent regulation. Mol Microbiol. 1994;13(6):1045–1055.
  • Rabin RS, Stewart V. Dual response regulators (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate- and nitrite-regulated gene expression in Escherichia coli K-12. J Bacteriol. 1993;175(11):3259–3268.
  • Lopez CA, Rivera-Chávez F, Byndloss MX, et al. The periplasmic nitrate reductase NapABC supports luminal growth of Salmonella enterica serovar Typhimurium during colitis. Infect Immun. 2015;83(9):3470–3478. DOI:10.1128/IAI.00351-15
  • Roggiani M, Yadavalli SS, Goulian M. Natural variation of a sensor kinase controlling a conserved stress response pathway in Escherichia coli. PLoS Genet. 2017;13(11):e1007101.
  • Perry JA, Lévesque CM, Suntharaligam P, et al. Involvement of Streptococcus mutans regulator RR11 in oxidative stress response during biofilm growth and in the development of genetic competence. Lett Appl Microbiol. 2008;47(5):439–444. DOI:10.1111/j.1472-765X.2008.02455.x
  • Jack AA, Daniels DE, Jepson MA, et al. Streptococcus gordonii comCDE (competence) operon modulates biofilm formation with Candida albicans. Microbiology (Reading). 2015;161(2):411–421. DOI:10.1099/mic.0.000010
  • Jaworska K, Nieckarz M, Ludwiczak M, et al. OmpR-Mediated transcriptional regulation and function of two heme receptor proteins of Yersinia enterocolitica bio-serotype 2/O:9. Front Cell Infect Microbiol. 2018;8:333.
  • Rath S, et al. Pathogenic functions of host microbiota. Microbiome. 2018;6(1):174. DOI:10.1186/s40168-018-0542-0
  • Lee JH, Lee J. Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev. 2010;34(4):426–444.
  • Bansal T, Alaniz RC, Wood TK, et al. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci U S A. 2010;107(1):228–233. DOI:10.1073/pnas.0906112107
  • Jaglin M, Rhimi M, Philippe C, et al. Indole, a signaling molecule produced by the gut microbiota, negatively impacts emotional behaviors in rats. Front Neurosci. 2018;12:216.
  • Wyatt M, Greathouse KL. Targeting dietary and microbial tryptophan-indole metabolism as therapeutic approaches to colon cancer. Nutrients. 2021;13(4):1189.
  • Mu C, Choudhary A, Mayengbam S, et al. Seizure modulation by the gut microbiota and tryptophan-kynurenine metabolism in an animal model of infantile spasms. EBioMedicine. 2022;76:103833. DOI:10.1016/j.ebiom.2022.103833
  • Galperin MY. Diversity of structure and function of response regulator output domains. Curr Opin Microbiol. 2010;13(2):150–159.
  • Zschiedrich CP, Keidel V, Szurmant H. Molecular mechanisms of two-component signal transduction. J Mol Biol. 2016;428(19):3752–3775.
  • Goulian M. Two-component signaling circuit structure and properties. Curr Opin Microbiol. 2010;13(2):184–189.
  • Ninfa AJ, Magasanik B. Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. Proc Natl Acad Sci U S A. 1986;83(16):5909–5913.
  • Alvarez AF, Barba-Ostria C, Silva-Jiménez H, et al. Organization and mode of action of two component system signaling circuits from the various kingdoms of life. Environ Microbiol. 2016;18(10):3210–3226. DOI:10.1111/1462-2920.13397
  • Choudhary KS, et al. Elucidation of regulatory modes for five two-component systems in Escherichia coli reveals novel relationships. mSystems. 2020;5(6). DOI:10.1128/mSystems.00980-20.
  • Murret-Labarthe C, Kerhoas M, Dufresne K, et al. New roles for two-component system response regulators of Salmonella enterica serovar Typhi during host cell interactions. Microorganisms. 2020;8(5):722. DOI:10.3390/microorganisms8050722
  • Wang BX, Cady KC, Oyarce GC, et al. Two-component signaling systems regulate diverse virulence-associated traits in Pseudomonas aeruginosa. Appl Environ Microbiol. 2021;87(11). DOI:10.1128/AEM.03089-20.
  • Rajeev L, Garber ME, Mukhopadhyay A. Tools to map target genes of bacterial two-component system response regulators. Environ Microbiol Rep. 2020;12(3):267–276.
  • Tiwari S, Jamal SB, Hassan SS, et al. Two-component signal transduction systems of pathogenic bacteria as targets for antimicrobial therapy: an overview. Front Microbiol. 2017;8:1878.
  • Tsai CN, MacNair CR, Cao MPT, et al. Targeting two-component systems uncovers a small-molecule inhibitor of Salmonella virulence. Cell Chem Biol. 2020;27(7):793–805 e7. DOI:10.1016/j.chembiol.2020.04.005
  • Belas R, Suvanasuthi R. The ability of Proteus mirabilis to sense surfaces and regulate virulence gene expression involves FliL, a flagellar basal body protein. J Bacteriol. 2005;187(19):6789–6803.
  • Chen Y, et al. Acetic acid acts as a volatile signal to stimulate bacterial biofilm formation. Mbio. 2015;6(3):e00392. DOI:10.1128/mBio.00392-15
  • Robertson CD, et al. Phosphotyrosine-Mediated regulation of enterohemorrhagic Escherichia coli virulence. Mbio. 2018;9(1). DOI:10.1128/mBio.00097-18.
  • Yoon H, McDermott JE, Porwollik S, et al. Coordinated regulation of virulence during systemic infection of Salmonella enterica serovar Typhimurium. PLoS Pathog. 2009;5(2):e1000306. DOI:10.1371/journal.ppat.1000306
  • Hsiao A, Liu Z, Joelsson A, et al. Vibrio cholerae virulence regulator-coordinated evasion of host immunity. Proc Natl Acad Sci U S A. 2006;103(39):14542–14547. DOI:10.1073/pnas.0604650103
  • Goswami M, Espinasse A, Carlson EE. Disarming the virulence arsenal of Pseudomonas aeruginosa by blocking two-component system signaling. Chem Sci. 2018;9(37):7332–7337.
  • Kumar A, Yang T, Chakravorty S, et al. Fluorescent sensors of siderophores produced by bacterial pathogens. J Biol Chem. 2022;298(3):101651. DOI:10.1016/j.jbc.2022.101651
  • Lopez CA, Skaar EP. The impact of dietary transition metals on host-bacterial interactions. Cell Host Microbe. 2018;23(6):737–748.
  • Hagiwara D, Yamashino T, Mizuno T. A Genome-wide view of the Escherichia coli BasS-BasR two-component system implicated in iron-responses. Biosci Biotechnol Biochem. 2004;68(8):1758–1767.
  • Ainsaar K, Mumm K, Ilves H, et al. The ColRS signal transduction system responds to the excess of external zinc, iron, manganese, and cadmium. BMC Microbiol. 2014;14(1):162. DOI:10.1186/1471-2180-14-162
  • LaBauve AE, Wargo MJ. Growth and laboratory maintenance of Pseudomonas aeruginosa. Curr Protoc Microbiol. 2012;6:6E 1.
  • Huszczynski SM, Lam JS, Khursigara CM. The role of Pseudomonas aeruginosa lipopolysaccharide in bacterial pathogenesis and physiology. Pathogens. 2019;9(1):6.
  • de Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in man: implications for health and disease. Physiol Rev. 2015;95(1):1–46.
  • Groisman EA, Hollands K, Kriner MA, et al. Bacterial Mg 2+ homeostasis, transport, and virulence. Annu Rev Genet. 2013;47(1):625–646. DOI:10.1146/annurev-genet-051313-051025
  • Gryllos I, Levin JC, Wessels MR. The CsrR/CsrS two-component system of group a Streptococcus responds to environmental Mg2+. Proc Natl Acad Sci U S A. 2003;100(7):4227–4232.
  • Kato A, Groisman EA, Howard Hughes Medical I. The PhoQ/phop regulatory network of Salmonella enterica. Adv Exp Med Biol. 2008;631:7–21.
  • Ren W, Rajendran R, Zhao Y, et al. Amino acids as mediators of metabolic cross talk between host and pathogen. Front Immunol. 2018;9:319.
  • Li L, Jiang W, Lu Y. A novel two-component system, GluR-GluK, involved in glutamate sensing and uptake in Streptomyces coelicolor. J Bacteriol. 2017;199(18). DOI:10.1128/JB.00097-17
  • Yan Q, Rogan CJ, Pang Y-Y, et al. Ancient co-option of an amino acid ABC transporter locus in Pseudomonas syringae for host signal-dependent virulence gene regulation. PLoS Pathog. 2020;16(7):e1008680. DOI:10.1371/journal.ppat.1008680
  • Fernstrom JD, Fernstrom MH. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr. 2007;137(6 1):1539S–1547S. discussion 1548S: DOI:10.1093/jn/137.6.1539S.
  • Best J, Nijhout HF, Reed M. Serotonin synthesis, release and reuptake in terminals: a mathematical model. Theor Biol Med Model. 2010;7(1):34.
  • Chen Y, Xu J, Chen Y. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients. 2021;13(6):2099. DOI:10.3390/nu13062099.
  • Bearson BL, Bearson SM. The role of the QseC quorum-sensing sensor kinase in colonization and norepinephrine-enhanced motility of Salmonella enterica serovar Typhimurium. Microb Pathog. 2008;44(4):271–278.
  • Reading NC, Rasko DA, Torres AG, et al. The two-component system QseEF and the membrane protein QseG link adrenergic and stress sensing to bacterial pathogenesis. Proc Natl Acad Sci U S A. 2009;106(14):5889–5894. DOI:10.1073/pnas.0811409106
  • Mangalea MR, Borlee BR. The NarX-NarL two-component system regulates biofilm formation, natural product biosynthesis, and host-associated survival in Burkholderia pseudomallei. Sci Rep. 2022;12(1):203.
  • Unal CM, Singh B, Fleury C, et al. QseC controls biofilm formation of non-typeable Haemophilus influenzae in addition to an AI-2-dependent mechanism. Int J Med Microbiol. 2012;302(6):261–269. DOI:10.1016/j.ijmm.2012.07.013
  • Wortsman J, Frank S, Cryer PE. Adrenomedullary response to maximal stress in humans. Am J Med. 1984;77(5):779–784.
  • Pellissier S, et al. Relationship between vagal tone, cortisol, TNF-alpha, epinephrine and negative affects in Crohn’s disease and irritable bowel syndrome. PLoS One. 2014;9(9):e105328. DOI:10.1371/journal.pone.0105328
  • Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev Med. 2009;60(1):355–366.
  • Shah PA, Park CJ, Shaughnessy MP, et al. Serotonin as a mitogen in the gastrointestinal tract: revisiting a familiar molecule in a new role. Cell Mol Gastroenterol Hepatol. 2021;12(3):1093–1104. DOI:10.1016/j.jcmgh.2021.05.008
  • Kumar A, Russell RM, Pifer R, et al. The serotonin neurotransmitter modulates virulence of enteric pathogens. Cell Host Microbe. 2020;28(1):41–53 e8. DOI:10.1016/j.chom.2020.05.004
  • Hillard CJ. Circulating endocannabinoids: from whence do they come and where are they going? Neuropsychopharmacology. 2018;43(1):155–172.
  • Liu P, Jing Y, Collie ND, et al. Altered brain arginine metabolism in schizophrenia. Transl Psychiatry. 2016;6(8):e871. DOI:10.1038/tp.2016.144
  • Chen K, Pittman RN, Popel AS. Nitric oxide in the vasculature: where does it come from and where does it go? A quantitative perspective. Antioxid Redox Signal. 2008;10(7):1185–1198.
  • Alvares TS, Conte-Junior C, Silva J, et al. Acute L-Arginine supplementation does not increase nitric oxide production in healthy subjects. Nutr Metab (Lond). 2012;9(1):54. DOI:10.1186/1743-7075-9-54
  • Lundberg JO, Carlstrom M, Weitzberg E. Metabolic effects of dietary nitrate in health and disease. Cell Metab. 2018;28(1):9–22.
  • Rocha BS, Laranjinha J. Nitrate from diet might fuel gut microbiota metabolism: minding the gap between redox signaling and inter-kingdom communication. Free Radic Biol Med. 2020;149:37–43.
  • Hu L, Jin L, Xia D, et al. Nitrate ameliorates dextran sodium sulfate-induced colitis by regulating the homeostasis of the intestinal microbiota. Free Radic Biol Med. 2020;152:609–621.
  • Van Alst NE, Picardo KF, Iglewski BH, et al. Nitrate sensing and metabolism modulate motility, biofilm formation, and virulence in Pseudomonas aeruginosa. Infect Immun. 2007;75(8):3780–3790. DOI:10.1128/IAI.00201-07
  • Noriega CE, Lin H-Y, Chen L-L, et al. Asymmetric cross-regulation between the nitrate-responsive NarX-NarL and NarQ-NarP two-component regulatory systems from Escherichia coli K-12. Mol Microbiol. 2010;75(2):394–412. DOI:10.1111/j.1365-2958.2009.06987.x
  • Partridge JD, Browning DF, Xu M, et al. Characterization of the Escherichia coli K-12 ydhYVWXUT operon: regulation by FNR, NarL and NarP. Microbiology (Reading). 2008;154(2):608–618. DOI:10.1099/mic.0.2007/012146-0
  • Martin-Rodriguez AJ, Rhen M, Melican K, et al. Nitrate metabolism modulates biosynthesis of biofilm components in uropathogenic escherichia coli and acts as a fitness factor during experimental urinary tract infection. Front Microbiol. 2020;11:26.
  • Phenn J, Pané-Farré J, Meukow N, et al. RegAB homolog of Burkholderia pseudomallei is the master regulator of redox control and involved in virulence. PLoS Pathog. 2021;17(5):e1009604. DOI:10.1371/journal.ppat.1009604
  • Hartig E, Schiek U, Vollack K-U, et al. Nitrate and nitrite control of respiratory nitrate reduction in denitrifying Pseudomonas stutzeri by a two-component regulatory system homologous to NarXL of Escherichia coli. J Bacteriol. 1999;181(12):3658–3665. DOI:10.1128/JB.181.12.3658-3665.1999
  • Boon N, Kaur M, Aziz A, et al. The signaling molecule indole inhibits induction of the AR2 acid resistance system in Escherichia coli. Front Microbiol. 2020;11:474.
  • Isaka M, et al. Streptococcus pyogenes TrxSR two-component system regulates biofilm production in acidic environments. Infect Immun. 2021;89(11):e0036021.
  • Sleator RD, Clifford T, Hill C. Gut osmolarity: a key environmental cue initiating the gastrointestinal phase of Listeria monocytogenes infection? Med Hypotheses. 2007;69(5):1090–1092.
  • Tropini C, Moss EL, Merrill BD, et al. Transient osmotic perturbation causes long-term alteration to the gut microbiota. Cell. 2018;173(7):1742–1754 e17. DOI:10.1016/j.cell.2018.05.008
  • Schwartz L, Abolhassani M, Pooya M, et al. Hyperosmotic stress contributes to mouse colonic inflammation through the methylation of protein phosphatase 2A. Am J Physiol Gastrointest Liver Physiol. 2008;295(5):G934–41. DOI:10.1152/ajpgi.90296.2008
  • Yuan J, Jin F, Glatter T, et al. Osmosensing by the bacterial PhoQ/phop two-component system. Proc Natl Acad Sci U S A. 2017;114(50):E10792–E10798. DOI:10.1073/pnas.1717272114
  • Boyce KJ, Cao C, Andrianopoulos A. Two-component signaling regulates osmotic stress adaptation via SskA and the high-osmolarity glycerol MAPK pathway in the human pathogen Talaromyces marneffei. mSphere. 2016;1(1). DOI:10.1128/mSphere.00086-15
  • Freeman ZN, Dorus S, Waterfield NR. The KdpD/kdpe two-component system: integrating K(+) homeostasis and virulence. PLoS Pathog. 2013;9(3):e1003201.
  • Gerken H, et al. Roles of the EnvZ/ompr two-component system and porins in iron acquisition in Escherichia coli. Mbio. 2020;11(3). DOI:10.1128/mBio.01192-20.