5,065
Views
3
CrossRef citations to date
0
Altmetric
Signature Reviews

Pathogenicity and virulence of Rickettsia

, & ORCID Icon
Pages 1752-1771 | Received 31 May 2022, Accepted 29 Sep 2022, Published online: 08 Oct 2022

References

  • Chan YG, Riley SP, Martinez JJ. Adherence to and invasion of host cells by spotted fever group Rickettsia Adherence to and invasion of host cells by spotted fever group Rickettsia species. Front Microbiol. 2010 December;1. DOI:10.3389/fmicb.2010.00139.
  • Blanc G, Ogata H, Robert C, et al. Reductive genome evolution from the mother of Rickettsia. PLoS Genet. 2007;3(1):e14.
  • Diop A, Raoult D, Fournier PE. Rickettsial genomics and the paradigm of genome reduction associated with increased virulence. Microbes Infect. 2018;20(7–8):401–409.
  • Driscoll TP, Verhoeve VI, Guillotte ML, et al. Wholly rickettsia! reconstructed metabolic profile of the quintessential bacterial parasite of eukaryotic cells. MBio. 2017;8(5). DOI:10.1128/mBio.00859-17.
  • Gillespie JJ, Williams K, Shukla M, et al. Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life. PLoS One. 2008;3(4):e2018. DOI:10.1371/journal.pone.0002018
  • Gillespie JJ, Beier MS, Rahman MS, et al. Plasmids and Rickettsial Evolution: insight from Rickettsia felis. PLoS One. 2007;2(3):e266. DOI:10.1371/journal.pone.0000266
  • Weinert LA, Werren JH, Aebi A, et al. Evolution and diversity of Rickettsiabacteria. BMC Biol. 2009;7(1):6.
  • Salje J. Cells within cells: rickettsiales and the obligate intracellular bacterial lifestyle. Nat Rev Microbiol. 2021;19(6):375–390.
  • Gillespie JJ, Ammerman NC, Beier-Sexton M, et al. Louse- and flea-borne rickettsioses: biological and genomic analyses. Vet Res. 2009;40(2):1–13.
  • Paddock CD, Sumner JW, Comer JA, et al. Rickettsia parkeri: a newly recognized cause of spotted fever rickettsiosis in the United States. Clin Infect Dis an off Publ Infect Dis Soc Am. 2004;38(6):805–811.
  • Walker DH. Rocky Mountain spotted fever: a disease in need of microbiological concern. Clin Microbiol Rev. 1989;2(3):227–240.
  • Parola P, Paddock CD, Socolovschi C, et al. Update on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev. 2013;26(4):657–702.
  • Angelakis E, Bechah Y, Raoult D. The history of Epidemic Typhus. Am Soc Microbiol. 2016;4(4). DOI:10.1016/S0891-5520(03)00093-X
  • Houhamdi L, Fournier PE, Fang R, et al. An experimental model of human body louse infection with Rickettsia prowazekii. J Infect Dis. 2002;186(11):1639–1646.
  • BRILL NE. An acute infectious disease of unknown origin; a clinical study based on 221 cases. Am J Med. 1952;13(5):533–541.
  • MURRAY ES, BAEHR G, SHWARTZMAN G, et al. BRILL’S DISEASE: i. Clinical and laboratory diagnosis. J Am Med Assoc. 1950;142(14):1059–1066.
  • Bechah Y, Capo C, Raoult D, et al. Infection of endothelial cells with virulent Rickettsia prowazekii increases the transmigration of leukocytes. J Infect Dis. 2008;197(1):142–147.
  • Otterdal K, Portillo A, Astrup E, et al. High serum CXCL10 in Rickettsia conorii infection is endothelial cell mediated subsequent to whole blood activation. Cytokine. 2016;83:269–274.
  • Piotrowski M, Rymaszewska A. Expansion of tick-borne rickettsioses in the world. Microorganisms. 2020;8(12):1–28.
  • Doppler JF, Newton PN. A systematic review of the untreated mortality of murine typhus. PLoS Negl Trop Dis. 2020;14(9):1–13.
  • Biggs HM, Behravesh CB, Bradley KK, et al. Diagnosis and management of tickborne rickettsial diseases: rocky mountain spotted fever and other spotted fever group rickettsioses, ehrlichioses, and anaplasmosis - United States a practical guide for health care and public health professionals. MMWR Recomm Rep. 2016;65(2):1–44.
  • Walker DH, Occhino C, Tringali GR, et al. Pathogenesis of rickettsial eschars: the tache noire of boutonneuse fever. Hum Pathol. 1988;19(12):1449–1454.
  • Kirkland KB, Marcom PK, Sexton DJ, et al. Rocky mountain spotted fever complicated by gangrene: report of six cases and review. Clin Infect Dis. 1993;16(5):629–634.
  • Kaplowitz LG, Fischer JJ, Sparling PF. Rocky Mountain spotted fever: a clinical dilemma. Curr Clin Top Infect Dis. 1981;2(89):108.
  • Tran LT, Helms JL, Sierra-Hoffman M, et al. Rickettsia typhi infection presenting as severe ARDS. IDCases. 2019;18:e00645.
  • Sekeyová Z, Danchenko M, Filipčík P, et al. Rickettsial infections of the central nervous system. PLoS Negl Trop Dis. 2019;13(8):1–18.
  • Kelly DJ, Richards AL, Temenak J, et al. The past and present threat of Rickettsial diseases to military medicine and international public health. Clin Infect Dis. 2002;34(Suppl 4):S145–169.
  • Raoult D, Woodward T, Dumler JS. The history of epidemic typhus. Infect Dis Clin North Am. 2004;18(1):127–140.
  • Jensen G, Aurell M, Raoult D. Outbreak of epidemic typhus in Russia. Lancet. 1998;352(9134):1151.
  • Mokrani K, Fournier PE, Dalichaouche M, et al. Reemerging threat of epidemic typhus in Algeria. J Clin Microbiol. 2004;42(8):3898–3900.
  • Niang M, Brouqui P, Raoult D. Epidemic typhus imported from Algeria. Emerg Infect Dis. 1999;5(5):716–718.
  • Umulisa I, Omolo J, Muldoon KA, et al. A mixed outbreak of epidemic typhus fever and trench fever in a youth rehabilitation center: risk factors for illness from a case-control study, Rwanda, 2012. Am J Trop Med Hyg. 2016;95(2):452–456.
  • Azad AF. Pathogenic rickettsiae as bioterrorism agents. Clin Infect Dis. 2007;45(1):S52–5.
  • Adjemian J, Parks S, McElroy K, et al. Murine typhus in Austin, TexRas, USA, 2008. Emerg Infect Dis. 2010;16(3):412–417.
  • Murine typhus–Hawaii, 2002.MMWR Morb Mortal Wkly Rep. 2003:52(50):1224–1226.
  • Abramowicz KF, Rood MP, Krueger L, et al. Urban focus of Rickettsia typhi and Rickettsia felis in Los Angeles, California. Vector-Borne Zoonotic Dis. 2011;11(7):979–984.
  • Manea SJ, Sasaki DM, Ikeda JK, et al. Clinical and epidemiological observations regarding the 1998 Kauai murine typhus outbreak. Hawaii Med J. 2001;60(1):7–11.
  • Abdad MY, Abdallah RA, Fournier P-E, et al. A Concise Review of the Epidemiology and Diagnostics of Rickettsiosis: rickettsia and Orientia spp. J Clin Microbiol. 2018;56(8):1–10.
  • Robinson MT, Satjanadumrong J, Hughes T, et al. Diagnosis of spotted fever group Rickettsia infections: the Asian perspective. Epidemiol Infect. 2019;147:e286.
  • Paddock CD, Holman RC, Krebs JW, et al. Assessing the magnitude of fatal Rocky mountain spotted fever in the United States: comparison of two national data sources. Am J Trop Med Hyg. 2002;67(4):349–354.
  • Herrero-Herrero JI, Walker DH, Ruiz-Beltran R. Immunohistochemical evaluation of the cellular immune response to rickettsia conorii in taches noires. J Infect Dis. 1987;155(4):802–805.
  • Walker DH, Gear JHS. Correlation of the distribution of Rickettsia conorii, microscopic lesions, and clinical features in South African tick bite fever. Am J Trop Med Hyg. 1985;34(2):361–371.
  • Kaplanski G, Teysseire N, Farnarier C, et al. IL-6 and IL-8 production from cultured human endothelial cells stimulated by infection with Rickettsia conorii via a cell-associated IL-1α-dependent pathway. J Clin Invest. 1995;96(6):2839–2844.
  • Sporn LA, Marder VJ. Interleukin-1α production during Rickettsia rickettsii infection of cultured endothelial cells: potential role in autocrine cell stimulation. Infect Immun. 1996;64(5):1609–1613.
  • Damås JK, Davì G, Jensenius M, et al. Relative chemokine and adhesion molecule expression in Mediterranean spotted fever and African tick bite fever. J Infect. 2009;58(1):68–75.
  • Dignat-George F, Teysseire N, Mutin M, et al. Rickettsia conorii infection enhances vascular cell adhesion molecule- 1- and intercellular adhesion molecule-1-dependent mononuclear cell adherence to endothelial cells. J Infect Dis. 1997;175(5):1142–1152.
  • Rydkina E, Turpin LC, Sahni SK. Rickettsia rickettsii infection of human macrovascular and microvascular endothelial cells reveals activation of both common and cell type-specific host response mechanisms. Infect Immun. 2010;78(6):2599–2606.
  • Shapiro MR, Fritz CL, Tait K, et al. Rickettsia 364D: a newly recognized cause of eschar-assodated illness in California. Clin Infect Dis. 2010;50(4):541–548.
  • Denison AM, Amin BD, Nicholson WL, et al. Detection of Rickettsia rickettsii, Rickettsia parkeri, and Rickettsia akari in skin biopsy specimens using a multiplex real-time polymerase chain reaction assay. Clin Infect Dis. 2014;59(5):635–642.
  • Kristof MN, Allen PE, Yutzy LD, et al. Significant growth by Rickettsia species within human macrophage-like cells is a phenotype correlated with the ability to cause disease in mammals. Pathogens. 2021;10(2):1–14.
  • Curto P, Simões I, Riley SP, et al. Differences in intracellular fate of two spotted fever group Rickettsia in macrophage-like cells. Front Cell Infect Microbiol. 2016;6(JUL):1–14.
  • Curto P, Santa C, Allen P, et al. A pathogen and a non-pathogen spotted fever group rickettsia trigger differential proteome signatures in macrophages. Front Cell Infect Microbiol. 2019;9(MAR):1–26.
  • Allen PE, Noland RC, Martinez JJ. Rickettsia conorii survival in THP-1 macrophages involves host lipid droplet alterations and active rickettsial protein production. Cell Microbiol. 2021;23(11):1–18.
  • Gillespie JJ, Kaur SJ, Sayeedur Rahman M, et al. Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev. 2015;39(1):47–80.
  • Rahman MS, Simser JA, Macaluso KR, et al. Functional analysis of secA homologues from rickettsiae. Microbiology. 2005;151(2):589–596.
  • Rahman MS, Simser JA, Macaluso KR, et al. Molecular and functional analysis of the lepB gene, encoding a type I signal peptidase from Rickettsia rickettsii and Rickettsia typhi. J Bacteriol. 2003;185(15):4578–4584.
  • Rahman MS, Ceraul SM, Dreher-Lesnick SM, et al. The lspA gene, encoding the type II signal peptidase of Rickettsia typhi: transcriptional and functional analysis. J Bacteriol. 2007;189(2):336–341.
  • Payne SH, Bonissone S, Wu S, et al. Unexpected diversity of signal peptides in prokaryotes. MBio. 2012;3(6):1–6. DOI:10.1128/mBio.00339-12
  • Blanc G, Ngwamidiba M, Ogata H, et al. Molecular evolution of Rickettsia surface antigens: evidence of positive selection. Mol Biol Evol. 2005;22(10):2073–2083.
  • McLeod MP, Qin X, Karpathy SE, et al. Complete genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae. J Bacteriol. 2004;186(17):5842–5855.
  • Sears KT, Ceraul SM, Gillespie JJ, et al. Surface proteome analysis and characterization of surface cell antigen (Sca) or autotransporter family of Rickettsia typhi. PLoS Pathog. 2012;8(8):e1002856.
  • Ieva R, Tian P, Peterson JH, et al. Sequential and spatially restricted interactions of assembly factors with an autotransporter β domain. Proc Natl Acad Sci U S A. 2011;108(31). DOI:10.1073/pnas.1103827108
  • Noriea NF, Clark TR, Mead D, et al. Proteolytic cleavage of the immunodominant outer membrane protein rOmpa in Rickettsia rickettsii. Schneewind O, ed. J Bacteriol. 2017; 199(6): e00826-16. DOI:10.1128/JB.00826-16.
  • Hackstadt T, Messer R, Cieplak W, et al. Evidence for proteolytic cleavage of the 120-kilodalton outer membrane protein of rickettsiae: identification of an avirulent mutant deficient in processing. Infect Immun. 1992;60(1):159–165.
  • Kaur SJ, Sayeedur Rahman M, Ammerman NC, et al. TolC-dependent secretion of an ankyrin repeat-containing protein of Rickettsia typhi. J Bacteriol. 2012;194(18):4920–4932.
  • Sanderlin AG, Hanna RE, Lamason RL. The ankyrin repeat protein RARP-1 is a periplasmic factor that supports Rickettsia parkeri growth and host cell invasion. bioRxiv. Published online 2022:2022.02.23.481736
  • Howell ML, Alsabbagh E, Ma JF, et al. AnkB, a periplasmic ankyrin-like protein in Pseudomonas aeruginosa, is required for optimal catalase B (KatB) activity and resistance to hydrogen peroxide. J Bacteriol. 2000;182(16):4545–4556.
  • Lambert C, Cadby IT, Till R, et al. Ankyrin-mediated self-protection during cell invasion by the bacterial predator Bdellovibrio bacteriovorus. Nat Commun. 2015:6. DOI:10.1038/ncomms9884
  • Bendtsen JD, Nielsen H, Widdick D, et al. Prediction of twin-arginine signal peptides. BMC Bioinformatics. 2005;6:1–9.
  • Frain KM, van Dijl JM, Robinson C. The Twin-Arginine Pathway for Protein Secretion. EcoSal Plus. 2019;8(2):1–12.
  • Spitz O, Erenburg IN, Beer T, et al. Type I Secretion Systems—One Mechanism for All? Microbiol Spectr. 2019;7(2). DOI:10.1128/microbiolspec.psib-0003-2018
  • Grohmann E, Christie PJ, Waksman G, et al. Type IV secretion in Gram-negative and Gram-positive bacteria. Mol Microbiol. 2018;107(4):455–471.
  • Gillespie JJ, Ammerman NC, Dreher-Lesnick SM, et al. An anomalous type IV secretion system in Rickettsia is evolutionarily conserved. PLoS One. 2009; 4(3):10.1371/journal.pone.0004833
  • Ogata H, La Scola B, Audic S, et al. Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens. PLoS Genet. 2006;2(5):733–744.
  • Ogata H, Robert C, Audic S, et al. Rickettsia felis, from culture to genome sequencing. Ann N Y Acad Sci. 2005;1063:26–34.
  • Liu H, Bao W, Lin M, et al. Ehrlichia type IV secretion effector ECH0825 is translocated to mitochondria and curbs ROS and apoptosis by upregulating host MnSOD. Cell Microbiol. 2012;14(7):1037–1050.
  • Lin M, den Dulk-Ras A, Hooykaas PJJ, et al. Anaplasma phagocytophilum AnkA secreted by type IV secretion system is tyrosine phosphorylated by Abl-1 to facilitate infection. Cell Microbiol. 2007;9(11):2644–2657.
  • Rennoll-Bankert KE, Rahman MS, Gillespie JJ, et al. Which way in? The RalF Arf-GEF Orchestrates Rickettsia host cell invasion. PLoS Pathog. 2015;11(8): 1–28.
  • Amor JC, Swails J, Zhu X, et al. The structure of RalF, an ADP-ribosylation factor guanine nucleotide exchange factor from Legionella pneumophila, reveals the presence of a cap over the active site. J Biol Chem. 2005;280(2):1392–1400.
  • Nagai H, Kagan JC, Zhu X, et al. A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science. 2002;295(5555):679–682. (80). DOI:10.1126/science.1067025
  • Rennoll-Bankert KE, Rahman MS, Guillotte ML, et al. RalF-mediated activation of Arf6 controls Rickettsia typhi invasion by co-opting phosphoinositol metabolism. Infect Immun. 2016;84(12):3496–3506.
  • Aistleitner K, Clark T, Dooley C, et al. Selective fragmentation of the trans-Golgi apparatus by Rickettsia rickettsii. PLoS Pathog. 2020;16(5):1–21.
  • Lehman SS, Noriea NF, Aistleitner K, et al. The rickettsial ankyrin repeat protein 2 is a type IV secreted effector that associates with the endoplasmic reticulum. MBio. 2018;9(3):1–15.
  • Alonso A, García-Del Portillo F. Hijacking of eukaryotic functions by intracellular bacterial pathogens. Int Microbiol off J Spanish Soc Microbiol. 2004;7(3):181–191.
  • Teysseire N, Boudier JA, Raoult D. Rickettsia conorii entry into Vero cells. Infect Immun. 1995;63(1):366–374.
  • Walker TS, Winkler HH. Penetration of cultured mouse fibroblasts (L cells) by Rickettsia prowazeki. Infect Immun. 1978;22(1):200–208.
  • Walker TS. Rickettsial interactions with human endothelial cells in vitro: adherence and entry. Infect Immun. 1984;44(2):205–210.
  • Ching W, Dasch GA, Carl M, et al. Structural Analyses of the 120‐kda serotype protein antigens of typhus group Rickettsiae: comparison with other s‐layer proteins. Ann N Y Acad Sci. 1990;590(1):334–351.
  • Gilmore RD, Cieplak W, Policastro PF, et al. The 120 kilodalton outer membrane protein (rOmp B) of Rickettsia rickettsii is encoded by an unusually long open reading frame: evidence for protein processing from a large precursor. Mol Microbiol. 1991;5(10):2361–2370.
  • Gilmore RD, Joste N, McDonald GA. Cloning, expression and sequence analysis of the gene encoding the 120kd surface‐exposed protein of Rickettsia rickettsii. Mol Microbiol. 1989;3(11):1579–1586.
  • Martinez JJ, Seveau S, Veiga E, et al. Ku70, a component of DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii. Cell. 2005;123(6):1013–1023.
  • Koike M. Dimerization, translocation and localization of Ku70 and Ku80 proteins. J Radiat Res. 2002;43(3):223–236.
  • Sui H, Hao M, Chang W, et al. The role of Ku70 as a cytosolic DNA sensor in innate immunity and beyond. Front Cell Infect Microbiol. 2021;11(October):1–18.
  • Monferran S, Paupert J, Dauvillier S, et al. The membrane form of the DNA repair protein Ku interacts at the cell surface with metalloproteinase 9. Embo J. 2004;23(19):3758–3768.
  • Monferran S, Muller C, Mourey L, et al. The Membrane-associated form of the DNA repair protein ku is involved in cell adhesion to fibronectin. J Mol Biol. 2004;337(3):503–511.
  • Martinez JJ, Cossart P. Early signaling events involved in the entry of Rickettsia conorii into mammalian cells. Published online 2004. DOI:10.1242/jcs.01382
  • Chan YGY, Cardwell MM, Hermanas TM, et al. Rickettsial outer-membrane protein B (rOmpb) mediates bacterial invasion through Ku70 in an actin, c-Cbl, clathrin and caveolin 2-dependent manner. Cell Microbiol. 2009;11(4):629–644.
  • Uchiyama T. Adherence to and invasion of vero cells by recombinant Escherichia coli expressing the outer membrane protein rOmpb of Rickettsia japonica. Ann N Y Acad Sci. 2003;990:585–590.
  • Uchiyama T, Kawano H, Kusuhara Y. The major outer membrane protein rOmpb of spotted fever group rickettsiae functions in the rickettsial adherence to and invasion of Vero cells. Microbes Infect. 2006;8(3):801–809.
  • Engström P, Burke TP, Mitchell G, et al. Evasion of autophagy mediated by Rickettsia surface protein OmpB is critical for virulence. Nat Microbiol. 2019;4(12):2538–2551.
  • Policastro PF, Hackstadt T. Differential activity of Rickettsia rickettsii ompA and ompB promoter regions in a heterologous reporter gene system. Microbiology. 1994;140(11):2941–2949.
  • Li H, Walker DH. rOmpa is a critical protein for the adhesion of Rickettsia rickettsii to host cells. Microb Pathog. 1998;24(5):289–298.
  • Hillman RD, Baktash YM, Martinez JJ. OmpA-mediated rickettsial adherence to and invasion of human endothelial cells is dependent upon interaction with α2β1 integrin. Cell Microbiol. 2013;15(5):727–741.
  • Sahni A, Patel J, Narra HP, et al. Fibroblast growth factor receptor-1 mediates internalization of pathogenic spotted fever rickettsiae into host endothelium. PLoS One. 2017;12(8):1–16.
  • Sahni A, Narra HP, Patel J, et al. MicroRNA-regulated rickettsial invasion into host endothelium via fibroblast growth factor 2 and its receptor FGFR1. Cells. 2018;7(12):1–15.
  • Noriea NF, Clark TR, Hackstadt T. Targeted knockout of the Rickettsia rickettsii OmpA surface antigen does not diminish virulence in a mammalian model system. MBio. 2015;6(2). DOI:10.1128/mBio.00323-15
  • Ngwamidiba M, Blanc G, Raoult D, et al. Sca 1, a previously undescribed paralog from autotransporter protein-encoding genes in Rickettsia species. BMC Microbiol. 2006;6(1):12.
  • Riley SP, Goh KC, Hermanas TM, et al. The Rickettsia conorii autotransporter protein sca1 promotes adherence to nonphagocytic mammalian cells. Infect Immun. 2010;78(5):1895–1904.
  • Cardwell MM, Martinez JJ. The Sca2 autotransporter protein from Rickettsia conorii is sufficient to mediate adherence to and invasion of cultured mammalian cells. Infect Immun. 2009;77(12):5272–5280.
  • Kleba B, Clark TR, Lutter EI, et al. Disruption of the Rickettsia rickettsii Sca2 autotransporter inhibits actin-based motility. Infect Immun. 2010;78(5):2240–2247.
  • Burke TP, Engström P, Tran CJ, et al. Interferon receptor-deficient mice are susceptible to eschar-associated rickettsiosis. Elife. 2021;10:e67029. DOI:10.7554/eLife.67029.
  • Rahman MS, Ammerman NC, Sears KT, et al. Functional characterization of a phospholipase A2 homolog from Rickettsia typhi. J Bacteriol. 2010;192(13):3294–3303.
  • Renesto P, Dehoux P, Gouin E, et al. Identification and characterization of a phospholipase D-superfamily gene in Rickettsiae. J Infect Dis. 2003;188(9):1276–1283.
  • Rahman MS, Gillespie JJ, Kaur SJ, et al. Rickettsia typhi possesses phospholipase A2 enzymes that are involved in infection of host cells. PLoS Pathog. 2013; 9(6):10.1371/journal.ppat.1003399
  • Burke JE, Dennis EA. Phospholipase A2 biochemistry. Cardiovasc Drugs Ther. 2009;23(1):49–59.
  • Winkler HH, Miller ET. Phospholipase a and the interaction of Rickettsia prowazekii and mouse fibroblasts (L-929 cells). Infect Immun. 1982;38(1):109–113.
  • Winkler HH, Daugherty RM. Phospholipase a activity associated with the growth of Rickettsia prowazekii in L929 cells. Infect Immun. 1989;57(1):36–40.
  • Walker DH, Firth WT, Ballard JG, et al. Role of phospholipase-associated penetration mechanism in cell injury by Rickettsia rickettsii. Infect Immun. 1983;40(2):840–842.
  • Walker DH, Feng HM, Popov VL. Rickettsial phospholipase a2 as a pathogenic mechanism in a model of cell injury by typhus and spotted fever group rickettsiae. Am J Trop Med Hyg. 2001;65(6):936–942.
  • Borgo G, Burke T, Lo N, et al. A patatin-like phospholipase mediates Rickettsia parkeri escape from host 2 membranes. 1–66. Published online 2021.
  • Whitworth T, Popov VL, Yu XJ, et al. Expression of the Rickettsia prowazekii pld or tlyC gene in Salmonella enterica serovar typhimurium mediates phagosomal escape. Infect Immun. 2005;73(10):6668–6673.
  • Driskell LO, Yu XJ, Zhang L, et al. Directed mutagenesis of the Rickettsia prowazekii pld gene encoding phospholipase D. Infect Immun. 2009;77(8):3244–3248.
  • Ristow LC, Welch RA. Hemolysin of uropathogenic Escherichia coli: a cloak or a dagger? Biochim Biophys Acta - Biomembr. 2016;1858(3):538–545.
  • Oliveira D, Borges A, Simões M. Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins (Basel). 2018;10(6). DOI:10.3390/toxins10060252
  • Seveau S. Multifaceted activity of listeriolysin o, the cholesterol-dependent cytolysin of listeria monocytogenes. 2014;80. DOI:10.1007/978-94-017-8881-6_9.
  • Clarke D, Fox J. The Phenomenon of in vitro hemolysis produced by the rickettsiae of typhus fever, with a note on the mechanism of rickettsial toxicity in mice. J Exp Med. 1948;88(1):25–41.
  • Snyder J, Bovarnick M, Miller J, et al. Observations on the hemolytic properties of typhus rickettsiae. J Bacteriol. 1954;67(6):724–730.
  • Ramm LE, Winkler HH. Rickettsial hemolysis: adsorption of rickettsiae to erythrocytes. Infect Immun. 1973;7(1):93–99.
  • Winkler HH. Rickettsial hemolysis: adsorption, desorption, readsorption and hemagglutination. Infect Immun. 1977;17(3):607–612.
  • Radulovic S, Troyer JM, Beier MS, et al. Identification and molecular analysis of the gene encoding Rickettsia typhi hemolysin. Infect Immun. 1999;67(11):6104–6108.
  • Engström P, Burke TP, Tran CJ, et al. Lysine methylation shields an intracellular pathogen from ubiquitylation and autophagy. Sci Adv. 2021;7(26). DOI:10.1126/sciadv.abg2517
  • Kim HK, Premaratna R, Missiakas DM, et al. Rickettsia conorii O antigen is the target of bactericidal Weil-Felix antibodies. Proc Natl Acad Sci U S A. 2019;116(39):19659–19664.
  • Abeykoon AH, Noinaj N, Choi BE, et al. Structural insights into substrate recognition and catalysis in outer membrane protein B (OmpB) by Protein-lysine methyltransferases from rickettsia. J Biol Chem. 2016;291(38):19962–19974.
  • Voss OH, Gillespie JJ, Lehman SS, et al. Risk1, a phosphatidylinositol 3-Kinase Effector, Promotes Rickettsia typhi Intracellular Survival. MBio. 2020;11(3):e00820–20.
  • Bechelli J, Vergara L, Smalley C, et al. Atg5 supports rickettsia australis infection in macrophages in vitro and in vivo. MBio. 2019;87(1):1–19.
  • Pizarro-Cerdá J, Cossart P. Listeria monocytogenes: cell biology of invasion and intracellular growth. Gram-Positive Pathog. 851–863. DOI:10.1128/9781683670131.ch53 Published online 2019.
  • Agaisse H. Molecular and cellular mechanisms of Shigella flexneri dissemination. Front Cell Infect Microbiol. 2016;6(MAR):1–10.
  • Teysseire N, Chiche-Portiche C, Raoult D. Intracellular movements of Rickettsia conorii adn R. typhi based on actin polymerization. Res Microbiol. 1992;143(9):821–829.
  • Heinzen RA, Hayes SF, Peacock MG, et al. Directional actin polymerization associated with spotted fever group Rickettsia infection of Vero cells. Infect Immun. 1993;61(5):1926–1935.
  • Walker DH, Yu XJ. Progress in rickettsial genome analysis from pioneering of Rickettsia prowazekii to the recent Rickettsia typhi. Ann N Y Acad Sci. 2005;1063:13–25.
  • Gouin E, Egile C, Dehoux P, et al. The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature. 2004;427(6973):457–461.
  • Reed SCO, Lamason RL, Risca VI, et al. Rickettsia actin-based motility occurs in distinct phases mediated by different actin nucleators. Curr Biol. 2014;24(1):98–103.
  • Nock AM, Clark TR, Hackstadt T. Regulator of actin-based motility (RoaM) downregulates actin tail formation by rickettsia rickettsii and is negatively selected in mammalian cell culture. MBio. 2022;13(2):e0035322.
  • Jeng RL, Goley ED, D’Alessio JA, et al. A Rickettsia WASP-like protein activates the Arp2/3 complex and mediates actin-based motility. Cell Microbiol. 2004;6(8):761–769.
  • Balraj P, El Karkouri K, Vestris G, et al. RickA expression is not sufficient to promote actin-based motility of Rickettsia raoultii. PLoS One. 2008;3(7). DOI:10.1371/journal.pone.0002582
  • Speck S, Kern T, Aistleitner K, et al. In vitro studies of Rickettsia-host cell interactions: confocal laser scanning microscopy of Rickettsia helvetica-infected eukaryotic cell lines. PLoS Negl Trop Dis. 2018;12(2):1–17.
  • Simser JA, Rahman MS, Dreher-Lesnick SM, et al. A novel and naturally occurring transposon, ISRpe1 in the Rickettsia peacockii genome disrupting the rickA gene involved in actin-based motility. Mol Microbiol. 2005;58(1):71–79.
  • Alqassim SS, Lee IG, Dominguez R. Rickettsia Sca2 recruits two actin subunits for nucleation but lacks WH2 domains. Biophys J. 2019;116(3):540–550.
  • Park HJ, Lee JH, Gouin E, et al. The Rickettsia surface cell antigen 4 applies mimicry to bind to and activate vinculin. J Biol Chem. 2011;286(40):35096–35103.
  • Lamason RL, Bastounis E, Kafai NM, et al. Rickettsia Sca4 reduces vinculin-mediated intercellular tension to promote spread. Cell. 2016;167(3):670–683.e10.
  • Narra HP, Sahni A, Alsing J, et al. Comparative transcriptomic analysis of Rickettsia conorii during in vitro infection of human and tick host cells. BMC Genomics. 2020;21(1):1–21.
  • Galletti MFBM, Fujita A, Nishiyama MY, et al. Natural blood feeding and temperature shift modulate the global transcriptional profile of rickettsia rickettsii infecting its tick vector. PLoS One. 2013;8(10):1–12.
  • Tokarz R, Anderton JM, Katona LI, et al. Combined effects of blood and temperature shift on Borrelia burgdorferi gene expression as determined by whole genome DNA array. Infect Immun. 2004;72(9):5419–5432.
  • Hecht JA, Allerdice MEJ, Dykstra EA, et al. Multistate survey of American dog ticks (Dermacentor variabilis) for Rickettsia Species. Vector-Borne Zoonotic Dis. 2019;19(9):652–657.
  • Hyochol AHN PhD, Weaver M PhD, Lyon D PhD, et al. Survey of Rickettsia parkeri and Amblyomma maculatum associated with small mammals in southeastern Virginia. Physiol Behav. 2017;176(1):139–148.
  • Sanchez-Vicente S, Tagliafierro T, Coleman JL, et al. Polymicrobial nature of tick-borne diseases. MBio. 2019;10(5). DOI:10.1128/mBio.02055-19
  • Labruna MB, Ogrzewalska M, Soares JF, et al. Experimental Infection of Amblyomma aureolatum Ticks with rickettsia rickettsii. Emerg Infect Dis. 2011;17(5):829–834.
  • Soares JF, Soares HS, Barbieri AM, et al. Experimental infection of the tick Amblyomma cajennense, Cayenne tick, with Rickettsia rickettsii, the agent of Rocky Mountain spotted fever. Med Vet Entomol. 2012;26(2):139–151.
  • Wright CL, Gaff HD, Sonenshine DE, et al. Experimental vertical transmission of Rickettsia parkeri in the Gulf Coast tick, Amblyomma maculatum. Ticks Tick Borne Dis. 2015;6(5):568–573.
  • Harris EK, Verhoeve VI, Banajee KH, et al. Comparative vertical transmission of Rickettsia by Dermacentor variabilis and Amblyomma maculatum. Ticks Tick Borne Dis. 2017;8(4):598–604.
  • Levin ML, Ford SL, Hartzer K, et al. Minimal Duration of tick attachment sufficient for transmission of infectious Rickettsia rickettsii (Rickettsiales: rickettsiaceae) by its primary vector dermacentor variabilis (Acari: ixodidae): duration of Rickettsial Reactivation in the Vector Revisite. J Med Entomol. 2020;57(2):585–594.
  • Karim S, Kumar D, Budachetri K. Recent advances in understanding tick and rickettsiae interactions. Parasite Immunol. 2021;43(5):1–11.
  • Al-Khafaji AM, Armstrong SD, Varotto Boccazzi I, et al. Rickettsia buchneri, symbiont of the deer tick Ixodes scapularis, can colonise the salivary glands of its host. Ticks Tick Borne Dis. 2020;11(1):101299.
  • Felsheim RF, Kurtti TJ, Munderloh UG. Genome sequence of the endosymbiont Rickettsia peacockii and comparison with virulent Rickettsia rickettsii: identification of virulence factors. PLoS One. 2009;4(12). DOI:10.1371/journal.pone.0008361
  • Kurtti TJ, Felsheim RF, Burkhardt NY, et al. Rickettsia buchneri sp. Nov., a rickettsial endosymbiont of the blacklegged tick ixodes scapularis. Int J Syst Evol Microbiol. 2015;65(3):965–970.
  • Harris E, Jirakanwisal K, Verhoeve V, et al. Role of Sca2 and RickA in the Dissemination of Rickettsia parkeri in Amblyomma maculatum. Infect Immun. 2018;86(6):e00123–18.
  • Azad AF, Sacci JB, Nelson WM, et al. Genetic characterization and transovarial transmission of a typhus-like rickettsia found in cat fleas. Proc Natl Acad Sci U S A. 1992;89(1):43–46.
  • Hirunkanokpun S, Thepparit C, Foil LD, et al. Horizontal transmission of Rickettsia felis between cat fleas, Ctenocephalides felis. Mol Ecol. 2011;20(21):4577–4586.
  • Macaluso KR, Pornwiroon W, Popov VL, et al. Identification of Rickettsia felis in the salivary glands of cat fleas. Vector-Borne Zoonotic Dis. 2008;8(3):391–396.
  • Danchenko M, Laukaitis HJ, MacAluso KR. Dynamic gene expression in salivary glands of the cat flea during Rickettsia felis infection. Pathog Dis. 2021;79(5):1–8.
  • Sashika M, Abe G, Matsumoto K, et al. Molecular survey of rickettsial agents in feral raccoons (Procyon lotor) in Hokkaido, Japan. Jpn J Infect Dis. 2010;63(5):353–354.
  • Boostrom A, Beier MS, Macaluso JA, et al. Geographic association of Rickettsia felis-infected opossums with human murine typhus, Texas. Emerg Infect Dis. 2002;8(6):549–554.
  • Tay ST, Mokhtar AS, Low KC, et al. Identification of rickettsiae from wild rats and cat fleas in Malaysia. Med Vet Entomol. 2014;28(SUPPL.1):104–108.
  • Phoosangwalthong P, Hii SF, Kamyingkird K, et al. Cats as potential mammalian reservoirs for Rickettsia sp. genotype RF2125 in Bangkok, Thailand. Vet Parasitol Reg Stud Reports. 2018;13(June):188–192.
  • Giudice E, Di Pietro S, Alaimo A, et al. A Molecular Survey of Rickettsia felis in fleas from cats and dogs in sicily (Southern Italy). PLoS One. 2014; 9(9):10.1371/journal.pone.0106820
  • Ng-Nguyen D, Hii SF, Hoang MTT, et al. Domestic dogs are mammalian reservoirs for the emerging zoonosis flea-borne spotted fever, caused by Rickettsia felis. Sci Rep. 2020;10(1):1–10.
  • Bozeman FM, Masiello SA, Williams MS, et al. Epidemic typhus rickettsiae isolated from flying squirrels. Nature. 1975;255(5509):545–547.
  • Duma RJ, Mcgill TM, Sonenshine DE, et al. Epidemic Typhus in the United States Associated with Flying Squirrels. JAMA J Am Med Assoc. 1981;245(22):2318–2323.
  • Laukaitis HJ, Macaluso KR. Unpacking the intricacies of Rickettsia–vector interactions. Trends Parasitol. 2021;37(8):734–746.
  • Houhamdi L, Fournier PE, Fang R, et al. An experimental model of human body louse infection with Rickettsia typhi. Ann N Y Acad Sci. 2003;990:617–627.