1,718
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Temporal dynamics of the bat wing transcriptome: Insight into gene-expression changes that enable protection against pathogen

, , , , &
Article: 2156185 | Received 19 Apr 2022, Accepted 02 Dec 2022, Published online: 04 Jan 2023

References

  • Geiser FH. Curr Bio. 2013;23(5):R188–13. DOI:10.1016/j.cub.2013.01.062
  • Carey HV, Andrews MT, Martin SL. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev. 2003;83(4):1153–1181 .DOI:10.1152/physrev.00008.2003 .
  • Geiser F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol. 2004;66(1):239–274. DOI:10.1146/annurev.physiol.66.032102.115105.
  • Bouma HR, Carey HV, Kroese FGM. Hibernation: The immune system at rest? J Leukocyte Biol. 2010;88(4):619–624. DOI:10.1189/jlb.0310174.
  • Jansen HT, Trojahn S, Saxton MW, et al. Hibernation induces widespread transcriptional remodeling in metabolic tissues of the grizzly bear. Commun Biol. 2019;2(1):336. DOI:10.1038/s42003-019-0574-4
  • Christine S, Marshall H, Andrews MT, et al. Seasonal and regional differences in gene expression in the brain of a hibernating mammal. PLoS ONE. 2013;8(3):e58427. DOI:10.1371/journal.pone.0058427
  • Lei M, Dong D, Mu S, et al. Comparison of brain transcriptome of the greater horseshoe bats (Rhinolophus ferrumequinum) in active and torpid episodes. PLoS ONE. 2013;9(9):e107746. DOI:10.1371/journal.pone.0107746
  • Faherty SL, Villanueva-Cañas JL, Blanco MB, et al. Transcriptomics in the wild: Hibernation physiology in free-ranging dwarf lemurs. Mol Ecol. 2018;27(3):709–722. DOI:10.1111/mec.14483
  • Williams DR, Epperson LE, Li W, et al. Seasonally hibernating phenotype assessed through transcript screening. Physiol Genomics. 2006;24(1):13–22. DOI:10.1152/physiolgenomics.00301.2004
  • Yan J, Barnes BM, Kohl F, et al. Modulation of gene expression in hibernating arctic ground squirrels. Physiol Genomics. 2008;32(2):170–181. DOI:10.1152/physiolgenomics.00075.2007
  • Fedorov VB, Goropashnaya AV, Tøien Ø, et al. Modulation of gene expression in heart and liver of hibernating black bears (Ursus americanus). BMC Genomics. 2011;12(1):171. DOI:10.1186/1471-2164-12-171
  • Hu Y, Li A, Xu Y, et al. Transcriptomic variation of locally-infected skin of Epinephelus coioides reveals the mucosal immune mechanism against cryptocaryon irritans. Fish Shellfish Immunol. 2017;66:398–410. DOI:10.1016/j.fsi.2017.05.042.
  • Xu Z, Parra D, Gómez D, et al. Teleost skin, an ancient mucosal surface that elicits gut-like immune responses. Proc Natl Acad Sci, USA. 2013;110(32):13097–13102. DOI:10.1073/pnas.1304319110
  • Eyerich S, Eyerich K, Traidl-Hoffmann C, et al. Cutaneous barriers and skin immunity: Differentiating a connected network. Trends Immunol. 2018;39(4):315–327. DOI:10.1016/j.it.2018.02.004
  • Matejuk A. Skin immunity. Arch Immunol Ther Exp. 2018;66(1):45–54. DOI:10.1007/s00005-017-0477-3.
  • Lorch JM, Meteyer CU, Behr MJ, et al. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature. 2011;480(7377):376–378. DOI:10.1038/nature10590
  • Minnis AM, Lindner DL. Phylogenetic evaluation of geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America. Fungal Biol. 2013;117(9):638–649. DOI:10.1016/j.funbio.2013.07.001.
  • Hoyt JR, Kilpatrick AM, Langwig KE. Ecology and impacts of white-nose syndrome on bats. Nat Rev Microbiol. 2021;19(3):196–210. DOI:10.1038/s41579-020-00493-5.
  • Meteyer CU, Buckles EL, Blehert DS, et al. Histopathologic criteria to confirm white-nose syndrome in bats. J Vet Diagn Invest. 2009;21(4):411–414. DOI:10.1177/104063870902100401
  • Meteyer CU, Barber D, Mandl JN. Pathology in euthermic bats with white-nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome. Virulence. 2012;3(7):583–588. DOI:10.4161/viru.22330.
  • Hoyt JR, Langwig KE, Sun KP, et al. Host persistence or extinction from emerging infectious disease: Insights from white-nose syndrome in endemic and invading regions. Proc Royal Soc B. 2016;283(1826):20152861. DOI:10.1098/rspb.2015.2861
  • Hoyt JR, Langwig KE, Sun KP, et al. Environmental reservoir dynamics predict global infection patterns and population impacts for the fungal disease white-nose syndrome. Proc Natl Acad Sci, USA. 2020;117(13):7255–7262. DOI:10.1073/pnas.1914794117
  • Zukal J, Bandouchova H, Brichta J, et al. White-nose syndrome without borders: Pseudogymnoascus destructans infection tolerated in Europe and Palearctic Asia but not in North America. Sci Rep. 2016;6(1):19829. DOI:10.1038/srep19829
  • Poorten TJ, Rosenblum EB. Comparative study of host response to chytridiomycosis in a susceptible and a resistant toad species. Mol Ecol. 2016;25(22):5663–5679. DOI:10.1111/mec.13871.
  • Ellison AR, Tunstall T, DiRenzo GV, et al. More than skin deep: functional genomic basis for resistance to amphibian chytridiomycosis. Genome Biol Evol. 2014;7(1):286–298. DOI:10.1093/gbe/evu285
  • Field KA, Johnson JS, Lilley TM, et al. The white-nose syndrome transcriptome: Activation of anti-fungal host responses in wing tissue of hibernating little brown myotis. PLOS Pathog. 2015;11(10):e1005168. DOI:10.1371/journal.ppat.1005168
  • Field KA, Sewall BJ, Prokkola JM, et al. Effect of torpor on host transcriptomic responses to a fungal pathogen in hibernating bats. Mol Ecol. 2018;27(18):3727–3743. DOI:10.1111/mec.14827
  • Davy CM, Donaldson ME, Willis CKR, et al. The other white-nose syndrome transcriptome: Tolerant and susceptible hosts respond differently to the pathogen Pseudogymnoascus destructans. Ecol Evol. 2017;7(18):7161–7170. DOI:10.1002/ece3.3234
  • Lilley TM, Prokkola JM, Blomberg AS, et al. Resistance is futile: RNA-sequencing reveals differing responses to bat fungal pathogen in Nearctic Myotis lucifugus and palearctic Myotis myotis. Oecologia. 2019;191(2):295–309. DOI:10.1007/s00442-019-04499-6
  • Davy CM, Donaldson ME, Bandouchova H, et al. Transcriptional host–pathogen responses of Pseudogymnoascus destructans and three species of bats with white-nose syndrome. Virulence. 2020;11(1):781–794. DOI:10.1080/21505594.2020.1768018
  • Frank CL, Sitler-Elbel KG, Hudson AJ, et al. The antifungal properties of epidermal fatty acid esters: Insights from white-nose syndrome (WNS) in bats. Molecules. 2018;23(8):1986. DOI:10.3390/molecules23081986
  • Roy BA, Kirchner JW. Evolutionary dynamics of pathogen resistance and tolerance. Evolution. 2000;54(1):51–63. DOI:10.1111/j.0014-3820.2000.tb00007.x.
  • Li AQ, Li ZL, Dai WT, et al. Bacterial community dynamics on bats and the implications for pathogen resistance. Environ Microbiol. 2022;24(3):1484–1498. DOI:10.1111/1462-2920.15754
  • McGuire LP, Kelly LA, Baloun DE, et al. Common condition indices are no more effective than body mass for estimating fat stores in insectivorous bats. J Mammal. 2018;99(5):1065–1071. DOI:10.1093/jmammal/gyy103
  • Muller LK, Lorch JM, Lindner DL, et al. Bat white-nose syndrome: A real-time TaqMan polymerase chain reaction test targeting the intergenic spacer region of Geomyces destructans. Mycologia. 2013;105(2):253–259. DOI:10.3852/12-242
  • Langwig KE, Frick WF, Reynolds R, et al. Host and pathogen ecology drive the seasonal dynamics of a fungal disease, white-nose syndrome. Proc Royal Soc B. 2015;282(1799):20142335. DOI:10.1098/rspb.2014.2335
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. DOI:10.1093/bioinformatics/btu170.
  • Dobin A, Davis CA, Schlesinger F, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2012;29(1):15–21. DOI:10.1093/bioinformatics/bts635
  • Anders S, Pyl PT, Huber W. Htseq—a python framework to work with high-throughput sequencing data. Bioinformatics. 2014;31(2):166–169. DOI:10.1093/bioinformatics/btu638.
  • Mortazavi A, Williams BA, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–628. DOI:10.1038/nmeth.1226
  • Li B, Dewey CN. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf. 2011;12(1):323. DOI:10.1186/1471-2105-12-323.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. DOI:10.1186/s13059-014-0550-8.
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;57(1):289–300. DOI:10.1111/j.2517-6161.1995.tb02031.x.
  • Team RC. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. URL https://www.R-project.org/
  • Consortium GO. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004;32(suppl_1):D258–261. DOI:10.1093/nar/gkh036.
  • Kanehisa M, Goto SK. Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. DOI:10.1093/nar/28.1.27.
  • Xiao Y, Wu Y, Sun K, et al. Differential expression of hepatic genes of the greater horseshoe bat (Rhinolophus ferrumequinum) between the summer active and winter torpid states. PLoS ONE. 2015;10(12):e0145702. DOI:10.1371/journal.pone.0145702
  • Fritze M, Puechmaille SJ, Costantini D, et al. Determinants of defence strategies of a hibernating European bat species towards the fungal pathogen Pseudogymnoascus destructans. Dev Comp Immunol. 2021;119:104017. DOI:10.1016/j.dci.2021.104017.
  • Bernard FOX, Morel F, Camus M, et al. Keratinocytes under fire of proinflammatory cytokines: Bona fide innate immune cells involved in the physiopathology of chronic atopic dermatitis and psoriasis. J Allergy. 2012;2012:718725. DOI:10.1155/2012/718725.
  • Cryan PM, Meteyer CU, Boyles JG, et al. Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biol. 2010;8(1):135. DOI:10.1186/1741-7007-8-135
  • Rosenblum EB, Poorten TJ, Settles M, et al. Only skin deep: Shared genetic response to the deadly chytrid fungus in susceptible frog species. Mol Ecol. 2012;21(13):3110–3120. DOI:10.1111/j.1365-294X.2012.05481.x
  • Flieger M, Bandouchova H, Cerny J, et al. Vitamin B2 as a virulence factor in Pseudogymnoascus destructans skin infection. Sci Rep. 2016;6(1):33200. DOI:10.1038/srep33200
  • Beekman C, Jiang Z, Suzuki BM, et al. Characterization of PdCP1, a serine carboxypeptidase from Pseudogymnoascus destructans, the causal agent of white-nose syndrome. Chem Biol. 2018;399(12):1375–1388. DOI:10.1515/hsz-2018-0240
  • Pannkuk EL, Risch TS, Savary BJ. Isolation and identification of an extracellular subtilisin-like serine protease secreted by the bat pathogen Pseudogymnoascus destructans. PLoS ONE. 2015;10(3):e0120508. DOI:10.1371/journal.pone.0120508.
  • Wang A, Al-Kuhlani M, Johnston SC, et al. Transcription factor complex AP-1 mediates inflammation initiated by Chlamydia pneumoniae infection. Cell Microbiol. 2013;15(5):779–794. DOI:10.1111/cmi.12071
  • Song X, Dai D, He X, et al. Growth factor FGF2 cooperates with interleukin-17 to repair intestinal epithelial damage. Immunity. 2015;43(3):488–501. DOI:10.1016/j.immuni.2015.06.024
  • Drees KP, Lorch JM, Puechmaille SJ, et al. Phylogenetics of a fungal invasion: Origins and widespread dispersal of white-nose syndrome. MBio. 2017;8(6):e01941–17.DOI:10.1128/mBio.01941-17.
  • Harazim M, Horáček I, Jakešová L, et al. Natural selection in bats with historical exposure to white-nose syndrome. BMC Zool. 2018;3(1):1–13. DOI:10.1186/s40850-018-0035-4