1,554
Views
1
CrossRef citations to date
0
Altmetric
Research Article

ZrgA contributes to zinc acquisition in Vibrio parahaemolyticus

, , , , &
Article: 2156196 | Received 23 Apr 2022, Accepted 04 Dec 2022, Published online: 04 Jan 2023

References

  • Letchumanan V, Chan KG, Lee LH. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Front Microbiol. 2014;5:705.
  • Zhang L, Orth K. Virulence determinants for Vibrio parahaemolyticus infection. Curr Opin Microbiol. 2013;16(1):70–14.
  • Ghenem L, Elhadi N, Alzahrani F, et al. Vibrio Parahaemolyticus: a review on distribution, pathogenesis, virulence determinants and epidemiology. Saudi J Med Med Sci. 2017;5(2):93–103. DOI:10.4103/sjmms.sjmms_30_17
  • Matsuda S, Hiyoshi H, Tandhavanant S, et al. Advances on Vibrio parahaemolyticus research in the postgenomic era. Microbiol Immunol. 2020;64(3):167–181. DOI:10.1111/1348-0421.12767
  • Paudyal N, Pan H, Liao XY, et al. A meta-analysis of major foodborne pathogens in Chinese food commodities between 2006 and 2016. Foodborne Pathog Dis. 2018;15(4):187–197. DOI:10.1089/fpd.2017.2417
  • Klein SL, West CKG, Mejia DM, et al. Genes similar to the Vibrio parahaemolyticus virulence-related genes tdh, tlh, and vscC2 occur in other vibrionaceae species isolated from a pristine estuary. Appl Environ Microb. 2014;80(2):595–602. DOI:10.1128/AEM.02895-13
  • Lee CT, Chen IT, Yang YT, et al. The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a deadly toxin. Proc Natl Acad Sci, USA. 2015;112(34):10798–10803. DOI:10.1073/pnas.1503129112
  • Prachumwat A, Taengchaiyaphum S, Mungkongwongsiri N, et al. Update on early mortality syndrome/acute hepatopancreatic necrosis disease by April 2018. J World Aquacult Soc. 2019;50(1):5–17. DOI:10.1111/jwas.12559
  • Begg SL. The role of metal ions in the virulence and viability of bacterial pathogens. Biochem Soc Trans. 2019;47(1):77–87.
  • Hood MI, Skaar EP. Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol. 2012;10(8):525–537.
  • Burcham LR, Le Breton Y, Radin JN, et al. Identification of zinc-dependent mechanisms used by group B streptococcus to overcome calprotectin-mediated stress. MBio. 2020;11(6):e02302–20. DOI:10.1128/mBio.02302-20
  • Makthal N, Nguyen K, Do H, et al. A critical role of zinc importer AdcABC in group a Streptococcus-host interactions during infection and its Implications for vaccine development. EBioMedicine. 2017;21:131–141.
  • Chandrangsu P, Rensing C, Helmann JD. Metal homeostasis and resistance in bacteria. Nat Rev Microbiol. 2017;15(6):338–350.
  • Price SL, Vadyvaloo V, DeMarco JK, et al. Yersiniabactin contributes to overcoming zinc restriction during Yersinia pestis infection of mammalian and insect hosts. Proc Natl Acad Sci, USA. 2021;118(44):e2104073118. DOI:10.1073/pnas.2104073118
  • Honsa ES, Johnson MD, Rosch JW. The roles of transition metals in the physiology and pathogenesis of Streptococcus pneumoniae. Front Cell Infect Microbiol. 2013;3:92.
  • Karunasagar I, Joseph SW, Twedt RM, et al. Enhancement of Vibrio parahaemolyticus virulence by lysed erythrocyte factor and iron. Infect Immun. 1984;46(1):141–144. DOI:10.1128/iai.46.1.141-144.1984
  • Gode-Potratz CJ, Chodur DM, McCarter LL. Calcium and iron regulate swarming and type III secretion in Vibrio parahaemolyticus. J Bacteriol. 2010;192(22):6025–6038.
  • Zhou J, Lu C, Zhang D, et al. NMR-based metabolomics reveals the metabolite profiles of Vibrio parahaemolyticus under ferric iron stimulation. J Microbiol. 2017;55(8):628–634. DOI:10.1007/s12275-017-6551-z
  • León-Sicairos N, Angulo-Zamudio UA, de la Garza M, et al. Strategies of Vibrio parahaemolyticus to acquire nutritional iron during host colonization. Front Microbiol. 2015;6:702.
  • Andreini C, Banci L, Bertini I, et al. Zinc through the three domains of life. J Proteome Res. 2006;5(11):3173–3178. DOI:10.1021/pr0603699
  • Liu M, Yan M, Liu L, et al. Characterization of a novel zinc transporter ZnuA acquired by Vibrio parahaemolyticus through horizontal gene transfer. Front Cell Infect Microbiol. 2013;3:61.
  • Makino K, Oshima K, Kurokawa K, et al. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae. Lancet. 2003;361(9359):743–749. DOI:10.1016/S0140-6736(03)12659-1
  • Sheng Y, Fan F, Jensen O, et al. Dual zinc transporter systems in Vibrio cholerae promote competitive advantages over gut microbiome. Infect Immun. 2015;83(10):3902–3908. DOI:10.1128/IAI.00447-15
  • Zheng C, Qiu J, Zhao X, et al. The AdcR-regulated AdcA and AdcAII contribute additively to zinc acquisition and virulence in Streptococcus suis. Vet Microbiol. 2022;269:109418.
  • Bu D, Luo H, Huo P, et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021;49(W1):W317–25. DOI:10.1093/nar/gkab447
  • Zhao F, Maren NA, Kosentka PZ, et al. An optimized protocol for stepwise optimization of real-time RT-PCR analysis. Hortic Res. 2021;8(1):179. DOI:10.1038/s41438-021-00616-w
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-delta delta C) method. Methods. 2001;25(4):402–408.
  • Milton DL, O’Toole R, Horstedt P, et al. Flagellin a is essential for the virulence of Vibrio anguillarum. J Bacteriol. 1996;178(5):1310–1319. DOI:10.1128/jb.178.5.1310-1319.1996
  • Morales VM, Bäckman A, Bagdasarian M. A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. Gene. 1991;97(1):39–47.
  • Whitaker WB, Richards GP, Boyd EF. Loss of sigma factor RpoN increases intestinal colonization of Vibrio parahaemolyticus in an adult mouse model. Infect Immun. 2014;82(2):544–556.
  • Heering J, Alvarado A, Ringgaard S. Induction of cellular differentiation and single cell imaging of Vibrio parahaemolyticus swimmer and swarmer cells. J Visualized Exp. 2017;123:55842. DOI:10.3791/55842
  • Croxatto A, Chalker VJ, Lauritz J, et al. VanT, a homologue of Vibrio harveyi LuxR, regulates serine, metalloprotease, pigment, and biofilm production in Vibrio anguillarum. J Bacteriol. 2002;184(6):1617–1629. DOI:10.1128/JB.184.6.1617-1629.2002
  • Gu D, Zhang Y, Wang Q, et al. S-nitrosylation-mediated activation of a histidine kinase represses the type 3 secretion system and promotes virulence of an enteric pathogen. Nat Commun. 2020;11(1):5777. DOI:10.1038/s41467-020-19506-1
  • Xiao Y, Chen H, Nie L, et al. Identification of c-di-GMP/FleQ-regulated new target genes, including cyaA, encoding adenylate cyclase, in Pseudomonas putida. mSystems. 2021;6(3):e00295–21. DOI:10.1128/mSystems.00295-21
  • Novichkov PS, Kazakov AE, Ravcheev DA, et al. RegPrecise 3.0 – a resource for genome-scale exploration of transcriptional regulation in bacteria. BMC Genomics. 2013;14(1):745. DOI:10.1186/1471-2164-14-745
  • Varela PF, Velours C, Aumont-Nicaise M, et al. Biophysical and structural characterization of a zinc-responsive repressor of the MarR superfamily. PLoS ONE. 2019;14(2):e0210123. DOI:10.1371/journal.pone.0210123
  • Wątły J, Potocki S, Rowińska-Żyrek M. Zinc homeostasis at the bacteria/host interface-from coordination chemistry to nutritional immunity. Chemistry. 2016;22(45):15992–10.
  • Capdevila DA, Wang J, Giedroc DP. Bacterial strategies to maintain zinc metallostasis at the host-pathogen interface. J Biol Chem. 2016;291(40):20858–20868.
  • Quan GM, Xia PP, Lian SQ, et al. Zinc uptake system ZnuACB is essential for maintaining pathogenic phenotype of F4ac(+) enterotoxigenic E. coli (ETEC) under a zinc restricted environment. Vet Res. 2020;51(1):127. DOI:10.1186/s13567-020-00854-1
  • Goethe E, Gieseke A, Laarmann K, et al. Identification and characterization of Mycobacterium smegmatis and Mycobacterium avium subsp. paratuberculosis zinc transporters. J Bacteriol. 2021;203(11):e00049–21. DOI:10.1128/JB.00049-21
  • Santos RERS, da Silva WP, Harrison S, et al. The zinc transporter ZnuABC is critical for the virulence of Chromobacterium violaceum and contributes to diverse zinc-dependent physiological processes. Infect Immun. 2021;89(11):e00311–21. DOI:10.1128/IAI.00311-21
  • Goethe E, Laarmann K, Luhrs J, et al. Critical role of Zur and SmtB in zinc homeostasis of Mycobacterium smegmatis. mSystems. 2020;5(2):e00880–19. DOI:10.1128/mSystems.00880-19
  • Bobrov AG, Kirillina O, Fosso MY, et al. Zinc transporters YbtX and ZnuABC are required for the virulence of Yersinia pestis in bubonic and pneumonic plague in mice. Metallomics. 2017;9(6):757–772. DOI:10.1039/C7MT00126F
  • Broberg CA, Calder TJ, Orth K. Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes Infect. 2011;13(12–13):992–01.
  • Wang R, Zhong Y, Gu X, et al. The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Front Microbiol. 2015;6:144.
  • Merchant SS, Helmann JD. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation. Adv Microb Physiol. 2012;60:91–210.
  • Lam LN, Brunson DN, Molina JJ, et al. The AdcACB/AdcAII system is essential for zinc homeostasis and an important contributor of Enterococcus faecalis virulence. Virulence. 2022;13(1):592–08. DOI:10.1080/21505594.2022.2056965
  • Plumptre CD, Eijkelkamp BA, Morey JR, et al. AdcA and AdcAII employ distinct zinc acquisition mechanisms and contribute additively to zinc homeostasis in Streptococcus pneumoniae. Mol Microbiol. 2014;91(4):834–851. DOI:10.1111/mmi.12504
  • Bayle L, Chimalapati S, Schoehn G, et al. Zinc uptake by Streptococcus pneumoniae depends on both AdcA and AdcAII and is essential for normal bacterial morphology and virulence. Mol Microbiol. 2011;82(4):904–916. DOI:10.1111/j.1365-2958.2011.07862.x
  • Pan Y, Chen Y, Chen J, et al. The adc regulon mediates zinc homeostasis in Streptococcus mutans. Mol Oral Microbiol. 2021;36(5):278–290. DOI:10.1111/omi.12350
  • Makthal N, Do H, Wendel BM, et al. Group a Streptococcus AdcR regulon participates in bacterial defense against host-mediated zinc sequestration and contributes to virulence. Infect Immun. 2020;88(8):e00097–20. DOI:10.1128/IAI.00097-20
  • Ganguly T, Peterson AM, Kajfasz JK, et al. Zinc import mediated by AdcABC is critical for colonization of the dental biofilm by Streptococcus mutans in an animal model. Mol Oral Microbiol. 2021;36(3):214–224. DOI:10.1111/omi.12337
  • Moreau GB, Qin A, Mann BJ. Zinc acquisition mechanisms differ between environmental and virulent Francisella species. J Bacteriol. 2018;200(4):e00587–17.
  • Nielubowicz GR, Smith SN, Mobley HL. Zinc uptake contributes to motility and provides a competitive advantage to Proteus mirabilis during experimental urinary tract infection. Infect Immun. 2010;78(6):2823–2833.
  • Ammendola S, D’Amico Y, Chirullo B, et al. Zinc is required to ensure the expression of flagella and the ability to form biofilms in. Salmonella enterica sv Typhimurium. Metallomics. 2016;8(10):1131–1140. DOI:10.1039/C6MT00108D
  • Desrosiers DC, Bearden SW, Mier I, et al. Znu is the predominant zinc importer in Yersinia pestis during in vitro growth but is not essential for virulence. Infect Immun. 2010;78(12):5163–5177. DOI:10.1128/IAI.00732-10
  • McDevitt CA, Ogunniyi AD, Valkov E, et al. A molecular mechanism for bacterial susceptibility to zinc. PLOS Pathogens. 2011;7(11):e1002357. DOI:10.1371/journal.ppat.1002357
  • Livny J, Zhou XH, Mandlik A, et al. Comparative RNA-Seq based dissection of the regulatory networks and environmental stimuli underlying Vibrio parahaemolyticus gene expression during infection. Nucleic Acids Res. 2014;42(19):12212–12223. DOI:10.1093/nar/gku891
  • Choi S, Bird AJ. Zinc’ing sensibly: controlling zinc homeostasis at the transcriptional level. Metallomics. 2014;6(7):1198–15.
  • Kandari D, Joshi H, Bhatnagar R. Zur: zinc-sensing transcriptional regulator in a diverse set of bacterial species. Pathogens. 2021;10(3):344.