7,551
Views
9
CrossRef citations to date
0
Altmetric
Signature Review

Pathogenicity and virulence of Aspergillus fumigatus

, , , , , , & show all
Article: 2172264 | Received 26 Jul 2022, Accepted 16 Dec 2022, Published online: 15 Feb 2023

References

  • Who.int. ‘The top 10 causes of death’ [online]. 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
  • Bongomin F, Gago S, Oladele R, et al. Global and multi-national prevalence of fungal diseases—estimate precision. J Fungi. 2017;3(4):57.
  • Guinn K, Rubin E, Darwin KH. Tuberculosis: just the FAQs. MBio. 2017;8(6). DOI:10.1128/mBio.01910-17
  • Paget J, Spreeuwenberg P, Charu V, et al. Global mortality associated with seasonal influenza epidemics: new burden estimates and predictors from the GLaMORproject. J Glob Health. 2019;9(2). DOI:10.7189/jogh.09.020421
  • Rokas A. Aspergillus. Curr Biol. 2013;23(5):R187–35.
  • van de Veerdonk FL, Gresnigt MS, Romani L, et al. Aspergillus fumigatus morphology and dynamic host interactions. Nature Rev Microbiol. 2017;15(11):661–674.
  • O’gorman C. Airborne Aspergillus fumigatus conidia: a risk factor for aspergillosis. Fungal Biol Rev. 2011;25(3):151–157.
  • Sugui J, Kwon-Chung K, Juvvadi P, et al. Aspergillus fumigatus and related species. Cold Spring Harb Perspect Med. 2014;5(2):a019786.
  • Sales-Campos H, Tonani L, Cardoso C, et al. The immune interplay between the host and the pathogen in Aspergillus fumigatus lung infection. Bio Med Res Int. 2013;2013:1–14.
  • Valiante V, Macheleidt J, Föge M. The Aspergillus fumigatus cell wall integrity signaling pathway: drug target, compensatory pathways, and virulence. Front Microbiol. 2015;06. DOI:10.3389/fmicb.2015.00325.
  • Shepardson K, Ngo L, Aimanianda V, et al. Hypoxia enhances innate immune activation to Aspergillus fumigatus through cell wall modulation. Microbes Infect. 2013;15(4):259–269.
  • Kwon-Chung KJ, Sugui JA. What do we know about the role of gliotoxin in the pathobiology of Aspergillus fumigatus? Med Mycol. 2009;47(Suppl 1):S97–103.
  • Dyer P, O’gorman C. Sexual development and cryptic sexuality in fungi: insights from Aspergillus species. FEMS Microbiol Rev. 2012;36(1):165–192.
  • Latge J, Chamilos G. Aspergillus fumigatus and Aspergillosis in 2019. Clinical Microbiology Reviews. 2019;33(1):199.
  • Hasleton PS. The internal surface area of the adult human lung. J Anat. 1972;112(Pt 3): 391–400. PMID: 4564685.
  • Hospenthal DR, Kwon-Chung KJ, Bennett JE. Concentrations of airborne Aspergillus compared to the incidence of invasive aspergillosis: lack of correlation. Med Mycol. 1998;36(3):165–168.
  • Hoselton S, Samarasinghe A, Seydel J, et al. An inhalation model of airway allergic response to inhalation of environmental Aspergillus fumigatus conidia in sensitized BALB/c mice. Med Mycol. 2010;48(8):1056–1065.
  • Baltussen T, Zoll J, Verweij P, et al. Molecular mechanisms of conidial germination in Aspergillus spp. Microbiol Mol Biol Rev. 2020;84(1). DOI:10.1128/MMBR.00049-19
  • Dagenais T, Keller N. Pathogenesis of Aspergillus fumigatus in Invasive Aspergillosis. Clinical Microbiology Reviews. 2009;22(3):447–465.
  • Rosowski E, Raffa N, Knox B, et al. Macrophages inhibit Aspergillus fumigatus germination and neutrophil-mediated fungal killing. PLOS Pathogens. 2018;14(8):e1007229.
  • Osherov N, May G. The molecular mechanisms of conidial germination. FEMS Microbiol Lett. 2001;199(2):153–160.
  • Sephton-Clark P, Voelz K. Spore germination of pathogenic filamentous fungi. Adv Appl Microbiol. 2018;117–157. DOI:10.1016/bs.aambs.2017.10.002
  • Kwon-Chung KJ, Sugui JA, Heitman J. Aspergillus fumigatus—what makes the species a ubiquitous human fungal pathogen? PLOS Pathogens. 2013;9(12):e1003743.
  • Lamarre C, Sokol S, Debeaupuis J, et al. Transcriptomic analysis of the exit from dormancy of Aspergillus fumigatus conidia. BMC Genomics. 2008;9(1). DOI:10.1186/1471-2164-9-417
  • Wang F, Sethiya P, Hu X, et al. Transcription in fungal conidia before dormancy produces phenotypically variable conidia that maximize survival in different environments. Nat Microbiol. 2021;6(8):1066–1081.
  • Hagiwara D, Takahashi H, Kusuya Y, et al. Comparative transcriptome analysis revealing dormant conidia and germination associated genes in Aspergillus species: an essential role for AtfA in conidial dormancy. BMC Genomics. 2016;17(1). DOI:10.1186/s12864-016-2689-z
  • Guinea J, Torres-Narbona M, Gijón P, et al. Pulmonary aspergillosis in patients with chronic obstructive pulmonary disease: incidence, risk factors, and outcome. Clin Microbiol Infect. 2010;16(7):870–877.
  • Chen J, Yang Q, Huang J, et al. Risk factors for invasive pulmonary Aspergillosis and hospital mortality in acute-on-chronic liver failure patients: a retrospective-cohort study. Int J Med Sci. 2013;10(12):1625–1631.
  • Denning D, Pashley C, Hartl D, et al. Fungal allergy in asthma–state of the art and research needs. Clin Transl Allergy. 2014;4(1):14.
  • Kousha M, Tadi R, Soubani A. Pulmonary aspergillosis: a clinical review. Eur Respir Rev. 2011;20(121):156–174.
  • Cuenca-Estrella M, Bassetti M, Lass-Florl C, et al. Detection and investigation of invasive mould disease. J Antimicrob Chemother. 2010;66(Supplement 1):i15–24.
  • Kosmidis C, Denning D. The clinical spectrum of pulmonary aspergillosis. Thorax. 2014;70(3):270–277.
  • Denning D, Cadranel J, Beigelman-Aubry C, et al. Chronic pulmonary aspergillosis: rationale and clinical guidelines for diagnosis and management. Eur Respir J. 2015;47(1):45–68.
  • Warn P, Sharp A, Morrissey G, et al. Activity of aminocandin (IP960; HMR3270) compared with amphotericin B, itraconazole, caspofungin and micafungin in neutropenic murine models of disseminated infection caused by itraconazole-susceptible and -resistant strains of Aspergillus fumigatus. Int J Antimicrob Agents. 2010;35(2):146–151.
  • Egerer G, Reichert D, Pletz M, et al. Caspofungin for treatment of invasive aspergillosis in Germany: results of a pre-planned subanalysis of an international registry. Eur J Med Res. 2012;17(1). DOI:10.1186/2047-783X-17-7
  • Patterson T, Thompson G, Denning D, et al. Practice guidelines for the diagnosis and management of Aspergillosis: 2016 update by the infectious diseases society of America. Clinl Infect Dis. 2016;63(4):e1–60.
  • Maghrabi F, Denning D. The management of chronic pulmonary Aspergillosis: the UK national aspergillosis centre approach. Current Fungal Infection Reports. 2017;11(4):242–251.
  • Jenks J, Hoenigl M. Treatment of Aspergillosis. J Fungi. 2018;4(3):98.
  • Pegorie M, Denning D, Welfare W. Estimating the burden of invasive and serious fungal disease in the United Kingdom. J Infect. 2017;74(1):60–71.
  • Benedict K, Jackson B, Chiller T, et al. Estimation of direct healthcare costs of fungal diseases in the United States. Clinl Infect Dis. 2018;68(11):1791–1797.
  • Sabino R, Veríssimo C, Viegas C, et al. The role of occupational Aspergillus exposure in the development of diseases. Med Mycol. 2019;57(Supplement_2):S196–205.
  • Sharma O, Chwogule R. Many faces of pulmonary aspergillosis. Eur Respir J. 1998;12(3):705–715.
  • Kontoyiannis D, Selleslag D, Mullane K, et al. Impact of unresolved neutropenia in patients with neutropenia and invasive aspergillosis: a post hoc analysis of the SECURE trial. J Antimicrob Chemother. 2017;73(3):757–763.
  • Gerson S. Prolonged granulocytopenia: the major risk factor for invasive pulmonary Aspergillosis in Patients with Acute Leukemia. Ann internal med. 1984;100(3):345.
  • Reichenberger F, Habicht J, Gratwohl A, et al. Diagnosis and treatment of invasive pulmonary aspergillosis in neutropenic patients. Eur Respir J. 2001;19(4):743–755.
  • Cunha C, Kurzai O, Löffler J, et al. Neutrophil responses to aspergillosis: new roles for old players. Mycopathologia. 2014;178(5–6):387–393.
  • Gago S, Overton N, Ben-Ghazzi N, et al. Lung colonization by Aspergillus fumigatus is controlled by ZNF77. Nat Commun. 2018;9(1). DOI:10.1038/s41467-018-06148-7
  • Bazaz R, Denning D. Aspergillosis: causes, types and treatment. Pharm J. 2019. DOI:10.1211/PJ.2019.20206738
  • De Pauw B, Walsh T, Donnelly J, et al. Revised definitions of invasive fungal disease from the European organization for research and treatment of cancer/invasive fungal infections cooperative group and the national institute of allergy and infectious diseases Mycoses Study Group (EORTC/MSG) consensus group. Clinl Infect Dis. 2008;46(12):1813–1821.
  • Hammond E, McDonald C, Vestbo J, et al. The global impact of Aspergillus infection on COPD. BMC Pulm Med. 2020;20(1). DOI:10.1186/s12890-020-01259-8
  • Lin S, Schranz J, Teutsch S. Aspergillosis case-fatality rate: systematic review of the literature. Clinl Infect Dis. 2001;32(3):358–366.
  • Baddley J, Andes D, Marr K, et al. Factors associated with mortality in transplant patients with invasive Aspergillosis. Clinl Infect Dis. 2010;50(12):1559–1567.
  • Sun K, Tsai C, Chen S, et al. Clinical outcome and prognostic factors associated with invasive pulmonary aspergillosis: an 11-year follow-up report from Taiwan. PLoS ONE. 2017;12(10):e0186422.
  • Palmer L, Greenberg H, Schiff M. Corticosteroid treatment as a risk factor for invasive aspergillosis in patients with lung disease. Thorax. 1991;46(1):15–20.
  • Singh N, Avery R, Munoz P, et al. Trends in risk profiles for and mortality associated with invasive Aspergillosis among liver transplant recipients. Clinl Infect Dis. 2003;36(1):46–52.
  • Mühlemann K, Wenger C, Zenhäusern R, et al. Risk factors for invasive aspergillosis in neutropenic patients with hematologic malignancies. Leukemia. 2005;19(4):545–550.
  • Husain S, Camargo J. Invasive Aspergillosis in solid‐organ transplant recipients: guidelines from the American Society of transplantation infectious diseases community of practice. Clin Transplant. 2019;33(9). DOI:10.1111/ctr.13544
  • Liu L, Gu Y, Wang Y, et al. The clinical characteristics of patients with nonneutropenic invasive pulmonary Aspergillosis. Front Med (Lausanne). 2021;8. DOI:10.3389/fmed.2021.631461
  • Meersseman W, Lagrou K, Maertens J, et al. Invasive Aspergillosis in the intensive care unit. Clinl Infect Dis. 2007;45(2):205–216.
  • Mercier T, Dunbar A, Veldhuizen V, et al. Point of care aspergillus testing in intensive care patients. crit care. 2020;24(1). DOI:10.1186/s13054-020-03367-7
  • Naaraayan A, Kavian R, Lederman J, et al. Invasive pulmonary aspergillosis – case report and review of literature. J Community Hosp Intern Med Perspect. 2015;5(1):26322.
  • Georgiadou S, Sipsas N, Marom E, et al. The diagnostic value of halo and reversed halo signs for invasive mold infections in compromised hosts. Clinl Infect Dis. 2011;52(9):1144–1155.
  • Shroff S, Shroff G, Yust‐katz S, et al. The CT halo sign in invasive aspergillosis. Clin Case Rep. 2014;2(3):113–114.
  • Blum U, Windfuhr M, Buitrago-Tellez C, et al. Invasive Pulmonary Aspergillosis. Chest. 1994;106(4):1156–1161.
  • Won H, Lee K, Cheon J, et al. Invasive pulmonary aspergillosis: prediction at thin-section CT in patients with neutropenia–a prospective study. Radiology. 1998;208(3):777–782.
  • Raveendran S, Lu Z. CT findings and differential diagnosis in adults with invasive pulmonary aspergillosis. Radiol Infect Dis. 2018;5(1):14–25.
  • Li X, Zeng X, Liu B, et al. COVID-19 Infection Presenting with CT halo sign. Radiology. 2020;2(1):e200026.
  • Adzic N, Obradovic K, Urban V, et al. Computed tomography features of pulmonary metastases from angiosarcoma: lessons learned from one case study. Radiol Case Rep. 2021;16(9):2646–2650.
  • Lee Y, Choi Y, Lee K, et al. CT halo sign: the spectrum of pulmonary diseases. Br J Radiol. 2005;78(933):862–865.
  • Shelhamer J. The laboratory evaluation of opportunistic pulmonary infections. Ann internal med. 1996;124(6):585.
  • Luong M, Clancy C, Vadnerkar A, et al. Comparison of an Aspergillus real-time polymerase chain reaction assay with galactomannan testing of bronchoalvelolar lavage fluid for the diagnosis of invasive pulmonary aspergillosis in lung transplant recipients. Clinl Infect Dis. 2011;52(10):1218–1226.
  • Zhou W, Li H, Zhang Y, et al. Diagnostic Value of galactomannan antigen test in serum and bronchoalveolar lavage fluid samples from patients with nonneutropenic invasive pulmonary Aspergillosis. J Clin Microbiol. 2017;55(7):2153–2161.
  • Herbrecht R, Denning D, Patterson T, et al. Voriconazole versus amphotericin B for primary therapy of invasive Aspergillosis. N Engl J Med. 2002;347(6):408–415.
  • Singh N, Husain S. Aspergillosis in solid organ transplantation. Am J Transplant. 2013;13(s4):228–241.
  • Lilly C, Welch V, Mayer T, et al. Evaluation of intravenous voriconazole in patients with compromised renal function. BMC Infect Dis. 2013;13(1). DOI:10.1186/1471-2334-13-14
  • Izumikawa K, Tashiro T, Tashiro M, et al. Pathogenesis and clinical features of chronic pulmonary aspergillosis – is it possible to distinguish CNPA and CCPA clinically? J Infect Chemother. 2014;20(3):208–212.
  • Gaffi.org. [online]. 2022. Available from: https://gaffi.org/wp-content/uploads/Briefing-note-TB-and-CPA-September-2021.pdf.
  • Smith N, Denning D. Underlying conditions in chronic pulmonary aspergillosis including simple aspergilloma. Eur Respir J. 2010;37(4):865–872.
  • Schweer K, Bangard C, Hekmat K, et al. Chronic pulmonary aspergillosis. Mycoses. 2013;57(5):257–270.
  • Medicine TLR. Chronic pulmonary aspergillosis: help is on the way. Lancet Respir Med. 2016;4(2):83.
  • Judson MA, Stevens DA. The treatment of pulmonary aspergilloma. Curr Opin Invest Drugs. 2001;2(10): 1375–1377. PMID: 11890350.
  • Jain L, Denning D. The efficacy and tolerability of voriconazole in the treatment of chronic cavitary pulmonary aspergillosis. J Infect. 2006;52(5):e133–137.
  • Agarwal R, Vishwanath G, Aggarwal A, et al. Itraconazole in chronic cavitary pulmonary aspergillosis: a randomised controlled trial and systematic review of literature. Mycoses. 2013;56(5):559–570.
  • Bongomin F, Harris C, Hayes G, et al. Twelve-month clinical outcomes of 206 patients with chronic pulmonary aspergillosis. PLoS ONE. 2018;13(4):e0193732.
  • Farid S, Mohamed S, Devbhandari M, et al. Results of surgery for chronic pulmonary Aspergillosis, optimal antifungal therapy and proposed high risk factors for recurrence - a national centre’s experience. J Cardiothorac Surg. 2013;8(1). DOI:10.1186/1749-8090-8-180
  • Al-Shair K, Atherton G, Harris C, et al. Long-term antifungal treatment improves health status in patients with chronic pulmonary Aspergillosis: a longitudinal analysis. Clinl Infect Dis. 2013;57(6):828–835.
  • Shah A, Panjabi C. Allergic Bronchopulmonary Aspergillosis: a perplexing clinical entity. Allergy, Asthma & Immunology Research. 2016;8(4):282.
  • Janahi I, Rehman A, Al-Naimi A. Allergic bronchopulmonary aspergillosis in patients with cystic fibrosis. Ann Thorac Med. 2017;12(2):74.
  • Maturu V, Agarwal R. Prevalence of Aspergillus sensitization and allergic bronchopulmonary aspergillosis in cystic fibrosis: systematic review and meta-analysis. Clinical & Clinical & Experimental Allergy. 2015;45(12):1765–1778.
  • Agarwal R, Sehgal I, Dhooria S, et al. Developments in the diagnosis and treatment of allergic bronchopulmonary aspergillosis. Expert Rev Respir Med. 2016;10(12):1317–1334.
  • Agarwal R, Hazarika B, Gupta D, et al. Aspergillus hypersensitivity in patients with chronic obstructive pulmonary disease: cOPD as a risk factor for ABPA? Med Mycol. 2010;48(7):988–994.
  • Tiew P, Ko F, Pang S, et al. Environmental fungal sensitisation associates with poorer clinical outcomes in COPD. Eur Respir J. 2020;56(2):2000418.
  • Shah A. Allergic bronchopulmonary aspergillosis: an Indian perspective. Curr Opin Pulm Med. 2007;13(1):72–80.
  • Asano K, Hebisawa A, Ishiguro T, et al. New clinical diagnostic criteria for allergic bronchopulmonary aspergillosis/mycosis and its validation. J Allergy Clin Immunol. 2021;147(4):1261–1268.e5.
  • Agarwal R, Khan A, Garg M, et al. Pictorial essay: allergic bronchopulmonary aspergillosis. Indian J Radiol Imaging. 2011;21(04):242–252.
  • Fink JN. Therapy of allergic bronchopulmonary aspergillosis. The Indian Journal of Chest Diseases & Allied Sciences. 2000;42(4): 221–224. PMID: 15597668.
  • Greenberger P. Allergic bronchopulmonary aspergillosis. J Allergy Clin Immunol. 2002;110(5):685–692.
  • Lehmann S, Pfannenstiel C, Friedrichs F, et al. Omalizumab: a new treatment option for allergic bronchopulmonary aspergillosis in patients with cystic fibrosis. Ther Adv Respir Dis. 2014;8(5):141–149.
  • Fraczek M, Chishimba L, Niven R, et al. Corticosteroid treatment is associated with increased filamentous fungal burden in allergic fungal disease. J Allergy Clin Immunol. 2018;142(2):407–414.
  • Elphick H, Southern K. Antifungal therapies for allergic bronchopulmonary aspergillosis in people with cystic fibrosis. Cochrane Database Syst Rev. 2016;2016(11). DOI:10.1002/14651858.CD002204.pub4
  • Aaron S, Vandemheen K, Freitag A, et al. Treatment of Aspergillus fumigatus in patients with cystic fibrosis: a randomized, placebo-controlled pilot study. PLoS ONE. 2012;7(4):e36077.
  • Chishimba L, Niven R, Cooley J, et al. Voriconazole and posaconazole improve asthma severity in allergic Bronchopulmonary Aspergillosis and severe asthma with fungal sensitization. J Asthma. 2012;49(4):423–433.
  • Kanu A, Patel K. Treatment of allergic bronchopulmonary aspergillosis (ABPA) in CF with anti‐ige antibody (omalizumab). Pediatr Pulmonol. 2008;43(12):1249–1251.
  • Emiralioglu N, Dogru D, Tugcu G, et al. Omalizumab treatment for Allergic Bronchopulmonary Aspergillosis in cystic fibrosis. Ann Pharmacother. 2015;50(3):188–193.
  • Collins J, Hudes DV, Rosenstreich D. Allergic bronchopulmonary aspergillosis treated successfully for one year with omalizumab. J Asthma Allergy. 2012;65. DOI:10.2147/JAA.S34579
  • Koutsokera A, Corriveau S, Sykes J, et al. Omalizumab for asthma and allergic bronchopulmonary aspergillosis in adults with cystic fibrosis. J Cystic Fibrosis. 2020;19(1):119–124.
  • Chrdle A, Mustakim S, Bright-Thomas R, et al. Aspergillus bronchitis without significant immunocompromise. Ann N Y Acad Sci. 2012;1272(1):73–85.
  • Brandt C, Roehmel J, Rickerts V, et al. Aspergillus Bronchitis in Patients with Cystic Fibrosis. Mycopathologia. 2017;183(1):61–69.
  • Shoseyov D, Brownlee K, Conway S, et al. Aspergillus Bronchitis in Cystic Fibrosis. Chest. 2006;130(1):222–226.
  • Coughlan C, Chotirmall S, Renwick J, et al. The effect of Aspergillus fumigatus Infection on Vitamin D receptor expression in cystic fibrosis. Am J Respir Crit Care Med. 2012;186(10):999–1007.
  • Banerjee B, Greenberger PA, Fink JN, et al. Immunological characterization of Asp f 2, a major allergen from Aspergillus fumigatus associated with allergic bronchopulmonary aspergillosis. Infect Immun. 1998;66(11):5175–5182.
  • Levdansky E, Romano J, Shadkchan Y, et al. Coding tandem repeats generate diversity in Aspergillus fumigatus genes. Eukaryot Cell. 2007;6(8):13801391. PubMed: 17557878.
  • Upadhyay SK, Mahajan L, Ramjee S, et al. Identification and characterization of a laminin-binding protein of Aspergillus fumigatus: extracellular thaumatin domain protein (AfCalap). J Med Microbiol. 2009;58(6):714–722.
  • Speth C, Rambach G, Lass-Flörl C, et al. Galactosaminogalactan (GAG) and its multiple roles in Aspergillus pathogenesis. Virulence. 2019;10(1):976–983.
  • Wagener J, Echtenacher B, Rohde M, et al. The putative alpha-1,2-mannosyltransferase AfMnt1 of the opportunistic fungal pathogen Aspergillus fumigatus is required for cell wall stability and full virulence. Eukaryot Cell. 2008;7(10):1661–1673.
  • Bhabhra R, Miley MD, Mylonakis E, et al. Disruption of the Aspergillus fumigatus gene encoding nucleolar protein CgrA impairs thermotolerant growth and reduces virulence. Infect Immun. 2004 Aug;72(8):4731–4740. DOI:10.1128/IAI.72.8.4731-4740.2004.
  • Kolattukudy PE, Lee JD, Rogers LM, et al. Evidence for possible involvement of an elastolytic serine protease in aspergillosis. Infect Immun. 1993;61(6):2357–2368.
  • Beattie SR, Mark KMK, Thammahong A, et al. Filamentous fungal carbon catabolite repression supports metabolic plasticity and stress responses essential for disease progression. PLoS Pathogen. 2017;13(4):e1006340.
  • Panepinto JC, Oliver BG, Fortwendel JR, et al. Deletion of the Aspergillus fumigatus gene encoding the Ras-related protein RhbA reduces virulence in a model of invasive pulmonary aspergillosis. Infect Immun. 2003;71(5):2819–2826.
  • Krappmann S, Bignell EM, Reichard U, et al. The Aspergillus fumigatus transcriptional activator CpcA contributes significantly to the virulence of this fungal pathogen. Mol Microbiol. 2004;52(3):785–799.
  • Amich J, Bignell E. Amino acid biosynthetic routes as drug targets for pulmonary fungal pathogens: what is known and why do we need to know more? Curr Opin Microbiol. 2016;32:151–158.
  • Kerkaert J, Le Mauff F, Wucher B, et al. An alanine aminotransferase is required for biofilm-specific resistance of Aspergillus fumigatus to Echinocandin Treatment. MBio. 2022;13(2). DOI:10.1128/mbio.02933-21
  • Liebmann B, Muller M, Braun A, et al. The cyclic AMP-dependent protein kinase a network regulates development and virulence in Aspergillus fumigatus. Infect Immun. 2004;72(9):5193–5203.
  • Schrettl M, Bignell E, Kragl C, et al. Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J Exp Med. 2004;200(9):1213–1219.
  • Schrettl M, Haas H. Iron homeostasis–achilles’ heel of Aspergillus fumigatus? Curr Opin Microbiol. 2011;14(4):400–405.
  • Amich J, Vicente Franqueira R, Leal F, et al. Aspergillus fumigatus survival in alkaline and extreme zinc-limiting environments relies on the induction of a zinc homeostasis system encoded by the zrfc and aspf2 genes. Eukaryotic Cell. 2010;9(3):424–437.
  • Moreno MÁ, Ibrahim-Granet O, Vicentefranqueira R, et al. The regulation of zinc homeostasis by the ZafA transcriptional activator is essential for Aspergillus fumigatus virulence. Mol Microbiol. 2007;64(5):1182–1197.
  • Schlachter CR, Klapper V, Radford T, et al. Comparative studies of aspergillus fumigatus 2-methylcitrate synthase and human citrate synthase. Biol Chem. 2019;400(12):1567–1581.
  • Brown JS, Aufauvre-Brown A, Brown J, et al. Signature-tagged and directed mutagenesis identify PABA synthetase as essential for aspergillus fumigatus pathogenicity. Mol Microbiol. 2002;36(6):1371–1380.
  • Mellado E, Aufauvre-Brown A, Gow NA, et al. The Aspergillus fumigatus chsC and chsG genes encode class III chitin synthases with different functions. Mol Microbiol. 1996;20(3):667–679.
  • Schmalhorst PS, Krappmann S, Vervecken W, et al. Contribution of galactofuranose to the virulence of the opportunistic pathogen Aspergillus fumigatus. Eukaryot Cell. 2008;7(8):1268–1277.
  • Chamilos G, Carvalho A. Aspergillus fumigatus DHN-Melanin. Curr Top Microbiol Immunol. 2020;425:17–28.
  • Calera JA, Paris S, Monod M, et al. Cloning and disruption of the antigenic catalase gene of Aspergillus fumigatus’. Infect Immun. 1997;65(11):4718–4724.
  • Lambou K, Lamarre C, Beau R, et al. Functional analysis of the superoxide dismutase family in Aspergillus fumigatus. Mol Microbiol. 2010;75(4):910–923.
  • Ries LNA, Pardeshi L, Dong Z, et al. The Aspergillus fumigatus transcription factor RglT is important for gliotoxin biosynthesis and self-protection, and virulence. PLOS Pathog. 2020;16(7):e1008645.
  • Shlezinger N, Irmer H, Dhingra S, et al. Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death. Science. 2017;357(6355):1037–1041.
  • Zhao W, Panepinto JC, Fortwendel JR, et al. Deletion of the regulatory subunit of protein kinase a in Aspergillus fumigatus alters morphology, sensitivity to oxidative damage, and virulence. Infect Immun. 2006;74(8):4865–4874.
  • Dirr F, Echtenacher B, Heesemann J, et al. AfMkk2 is required for cell wall integrity signaling, adhesion, and full virulence of the human pathogen Aspergillus fumigatus. Int J Med Microbiol. 2010;300(7):496–502.
  • Winkelströter LK, Bom VL, de Castro PA, et al. High osmolarity glycerol response PtcB phosphatase is important for Aspergillus fumigatus virulence. Mol Microbiol. 2015;96(1):42–54.
  • Alves de Castro P, Dos Reis TF, Dolan SK, et al. The Aspergillus fumigatus SchA SCH9 kinase modulates SakA HOG1 MAP kinase activity and it is essential for virulence. Mol Microbiol. 2016 Nov;102(4):642–671. DOI:10.1111/mmi.13484.
  • Steinbach WJ, Cramer RA Jr, Perfect BZ, et al. Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus. Eukaryot Cell. 2006;5(7):1091–1103.
  • Soriani FM, Malavazi I, Da Silva Ferreira ME, et al. Functional characterization of the Aspergillus fumigatus CRZ1 homologue, CrzA. Mol Microbiol. 2008;67(6):1274–1291.
  • de Castro P, Colabardini A, Manfiolli A, et al. Aspergillus fumigatus calcium-responsive transcription factors regulate cell wall architecture promoting stress tolerance, virulence and caspofungin resistance. PLoS Genet. 2019;15(12):e1008551.
  • Willger SD, Puttikamonkul S, Kim KH, et al. A sterol-regulatory element binding protein is required for cell polarity, hypoxia adaptation, azole drug resistance, and virulence in Aspergillus fumigatus. PLOS Pathog. 2008;4(11):e1000200.
  • Kirkland M, Stannard M, Kowalski C, et al. Host lung environment limits Aspergillus fumigatus germination through an SskA-Dependent Signaling Response. mSphere. 2021;6(6). DOI:10.1128/msphere.00922-21
  • Kowalski C, Kerkaert J, Liu K, et al. Fungal biofilm morphology impacts hypoxia fitness and disease progression. Nat Microbiol. 2019;4(12):2430–2441.
  • Nizet V, Johnson R. Interdependence of hypoxic and innate immune responses. Nat Rev Immunol. 2009;9(9):609–617.
  • Feng X, Krishnan K, Richie DL, et al. Haca-independent functions of the ER stress sensor IREA synergize with the canonical upr to influence virulence traits in aspergillus fumigatus. PLOS Pathogens. 2011;7(10):10.
  • Mulder HJ, Saloheimo M, Penttilä M, et al. The transcription factor HACA mediates the unfolded protein response in aspergillus niger, and up-regulates its own transcription. Mol Genet Genomic. 2004;271(2):130–140.
  • Bertuzzi M, Schrettl M, Alcazar-Fuoli L, et al. The pH-responsive PacC transcription factor of Aspergillus fumigatus governs epithelial entry and tissue invasion during pulmonary aspergillosis. 16 PLOS Pathog. 2014;101:e1004413. 10.1371/journal.ppat.1004413
  • Fortwendel JR, Zhao W, Bhabhra R, et al. A fungus-specific ras homolog contributes to the hyphal growth and virulence of aspergillus fumigatus. Eukaryotic Cell. 2005;4(12):1982–1989.
  • Croft CA, Culibrk L, Moore MM, et al. Interactions of Aspergillus fumigatus conidia with airway epithelial cells: a Critical review. Front Microbiol. 2016;7:472.
  • Thau N, Monod M, Crestani B, et al. Rodletless mutants of Aspergillus fumigatus’. Infect Immun. 1994;62(10):4380–4388.
  • Valsecchi I, Dupres V, Stephen-Victor E, et al. Role of Hydrophobins in Aspergillus fumigatus. J Fungi. 2017;4(1):2.
  • Gravelat FN, Beauvais A, Liu H, et al. Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system. PLOS Pathog. 2013;9(8):e1003575.
  • Lee MJ, Geller AM, Bamford NC, et al. Deacetylation of fungal exopolysaccharide mediates adhesion and biofilm formation. MBio. 2016;7(2): e00252-16. DOI:10.1128/mBio.00252-16
  • Kowalski C, Morelli K, Schultz D, et al. Fungal biofilm architecture produces hypoxic microenvironments that drive antifungal resistance. Proc Nat Acad Sci. 2020;117(36):22473–22483.
  • Di Piazza S, Houbraken J, Meijer M, et al. Thermotolerant and thermophilic mycobiota in different steps of compost maturation. Microorganisms. 2020;8(6):880.
  • Nierman WC, Pain A, Anderson MJ, et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature. 2005;438(7071):1151–1156.
  • Do JH, Yamaguchi R, Miyano S. Exploring temporal transcription regulation structure of Aspergillus fumigatus in heat shock by state space model. BMC Genomics. 2009;10(1):306.
  • Bhabhra R, Askew DS. Thermotolerance and virulence of Aspergillus fumigatus: role of the fungal nucleolus. Med Mycol. 2005;43(Supplement_1):S87–93.
  • Fleck CB, Schöbel F, Brock M. Nutrient acquisition by pathogenic fungi: nutrient availability, pathway regulation, and differences in substrate utilization. Int J Med Microbiol. 2011;301(5):400–407.
  • Abad A, Fernández-Molina JV, Bikandi J, et al. What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Rev Iberoam Micol. 2010;27(4):155–182.
  • Perez-Cuesta U, Guruceaga X, Cendon-Sanchez S, et al. Nitrogen, iron, and zinc acquisition: key nutrients to Aspergillus fumigatus virulence. J Fungi. 2021;7(7):518.
  • Liebmann B, Muheisen TW, Muller M, et al. Deletion of the aspergillus fumigatus lysine biosynthesis gene lysF encoding homoaconitase leads to attenuated virulence in a low-dose mouse infection model of invasive aspergillosis. Arch Microbiol. 2004;181(5):378–383.
  • Ibrahim-Granet O, Dubourdeau M, Latgé J-P, et al. Methylcitrate synthase from aspergillus fumigatus is essential for manifestation of invasive aspergillosis. Cell Microbiol. 2007. DOI:10.1111/j.1462-5822.2007.01025.x
  • Misslinger M, Hortschansky P, Brakhage AA, et al. Fungal iron homeostasis with a focus on Aspergillus fumigatus. Biochim Biophys Acta, Mol Cell Res. 2021;1868(1):118885.
  • Fontaine T, Simenel C, Dubreucq G, et al. Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J Biol Chem. 2000;275(36):27594–27607.
  • Tsai HF, Chang YC, Washburn RG, et al. The developmentally regulated alb1 gene of Aspergillus fumigatus: its role in modulation of conidial morphology and virulence. J Bacteriol. 1998;180(12):3031–3038.
  • Lionakis MS, Lewis RE, May GS, et al. Toll-deficient Drosophila flies as a fast, high-throughput model for the study of antifungal drug efficacy against invasive aspergillosis and Aspergillus virulence. J Infect Dis. 2005;191(7):11881195.
  • Akoumianaki T, Kyrmizi I, Valsecchi I, et al. Aspergillus cell wall melanin blocks LC3- associated phagocytosis to promote pathogenicity. Cell Host & Microbe. 2016;19(1):79–90.
  • Brown NA, Goldman GH. The contribution of Aspergillus fumigatus stress responses to virulence and antifungal resistance. J Microbiol. 2016 Mar;54(3):243–253. DOI:10.1007/s12275-016-5510-4.
  • May GS. Mitogen-activated protein kinase pathways in Aspergilli. Genomics, Medical Aspects, Biotechnology, and Research Methods. 2008;121–127. DOI:10.1080/13693780400024784
  • Ma D, Li R. Current understanding of HOG-MAPK pathway in Aspergillus fumigatus. Mycopathologia. 2013;175(1–2):13–23.
  • de Castro PA, Chen C, de Almeida RS, et al. ChIP-seq reveals a role for CrzA in the Aspergillus fumigatus high-osmolarity glycerol response (HOG) signalling pathway. Mol Microbiol. 2014;94(3):655–674.
  • Brown A, Cowen L, di Pietro A, et al. Stress Adaptation. Microbiol Spectr. 2017;5(4). DOI:10.1128/microbiolspec.FUNK-0048-2016
  • de Castro P, Chiaratto J, Winkelströter L, et al. The Involvement of the Mid1/Cch1/Yvc1 Calcium Channels in Aspergillus fumigatus Virulence. PLoS ONE. 2014;9(8):e103957.
  • Liu S, Hou Y, Liu W, et al. Components of the calcium-calcineurin signaling pathway in fungal cells and their potential as antifungal targets. Eukaryot Cell. 2015;14(4):324–334.
  • Juvvadi PR, Lamoth F, Steinbach WJ. Calcineurin-mediated regulation of hyphal growth, septation, and virulence in Aspergillus fumigatus. Mycopathologia. 2014;178(5–6):341–348.
  • Krishnan K, Askew D. The fungal UPR. Virulence. 2013;5(2):334–340.
  • Askew D. Endoplasmic reticulum stress and fungal pathogenesis converge. Virulence. 2014;5(2):331–333.
  • Guirao-Abad JP, Weichert M, Albee A, et al. A human IRE1 inhibitor blocks the unfolded protein response in the pathogenic fungus aspergillus fumigatus and suggests noncanonical functions within the pathway. mSphere. 2020;5(5). DOI:10.1128/mSphere.00879-20
  • Wezensky S, Cramer R. Implications of hypoxic microenvironments during invasive aspergillosis. Med Mycol. 2011;49(S1):S120–124.
  • Rius J, Guma M, Schachtrup C, et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature. 2008;453(7196):807–811.
  • Ye Y, Chen Y, Sun J, et al. Hyperglycemia suppresses the regulatory effect of hypoxia-inducible factor-1α in pulmonary Aspergillus fumigatus infection. Pathog Dis. 2020;78(5). DOI:10.1093/femspd/ftaa038
  • Cunha C, Aversa F, Romani L, et al. Human Genetic Susceptibility to Invasive Aspergillosis. PLOS Pathogens. 2013;9(8):e1003434.
  • Kowalski C, Beattie S, Fuller K, et al. Heterogeneity among isolates reveals that fitness in low oxygen correlates with Aspergillus fumigatus virulence. MBio. 2016;7(5). DOI:10.1128/mBio.01515-16
  • Lupiañez C, Canet L, Carvalho A, et al. Polymorphisms in Host Immunity-Modulating Genes and Risk of Invasive Aspergillosis: results from the AspBIOmics Consortium. Infect Immun. 2016;84(3):643–657.
  • Brune K, Frank J, Schwingshackl A, et al. Pulmonary epithelial barrier function: some new players and mechanisms. Am J Physiol Lung Cell Mol Physiol. 2015;308(8):L731–745.
  • Ridley C, Thornton D. Mucins: the frontline defence of the lung. Biochem Soc Trans. 2018;46(5):1099–1106.
  • Heinekamp T, Schmidt H, Lapp K, et al. Interference of Aspergillus fumigatus with the immune response. Semin Immunopathol. 2015;37(2):141–152.
  • Warwas M, Watson J, Bennet A, et al. Structure and role of sialic acids on the surface of Aspergillus fumigatus conidiospores. Glycobiology. 2007;17(4):401–410.
  • Jepsen C, Dubey L, Colmorten K, et al. FIBCD1 Binds Aspergillus fumigatus and regulates lung epithelial response to cell wall components. Front Immunol. 2018;9. DOI:10.3389/fimmu.2018.01967
  • Mambula S, Sau K, Henneke P, et al. Toll-like Receptor (TLR) Signaling in Response to Aspergillus fumigatus’. J Biol Chem. 2002;277(42):39320–39326.
  • Romani L. Immunity to fungal infections. Nat Rev Immunol. 2011;11(4):275–288.
  • Sun W, Lu X, Li X, et al. Dectin-1 is inducible and plays a crucial role in Aspergillus-induced innate immune responses in human bronchial epithelial cells. European Journal of Clinical Microbiology & Infectious Diseases. 2012;31(10):2755–2764.
  • Øya E, Becher R, Ekeren L, et al. Pro-inflammatory responses in human bronchial epithelial cells induced by spores and hyphal fragments of common damp indoor molds. Int J Environ Res Public Health. 2019;16(6):1085.
  • Drummond R, Brown G. The role of Dectin-1 in the host defence against fungal infections. Curr Opin Microbiol. 2011;14(4):392–399.
  • Zhao GQ, Lin J, Hu LT, et al. The role of Dectin-1/raf-1 signal cascade in innate immune of human corneal epithelial cells against Aspergillus fumigatus infection. Int J Ophthalmol. 2016;9(10):1371–1375.
  • Bidula S, Kenawy H, Ali Y, et al. Role of Ficolin-A and lectin complement pathway in the innate defense against pathogenic Aspergillus species. Infect Immun. 2013;81(5):1730–1740.
  • Khosravi A, Alheidary S, Nikaein D, et al. Aspergillus fumigatus conidia stimulate lung epithelial cells (TC-1 JHU-1) to produce IL-12, IFNγ, IL-13 and IL-17 cytokines: modulatory effect of propolis extract. Journal de Mycologie Médicale. 2018;28(4):594–598.
  • Beisswenger C, Hess C, Bals R. Aspergillus fumigatus conidia induce interferon- signalling in respiratory epithelial cells. Eur Respir J. 2011;39(2):411–418.
  • Mansour M, Tam J, Khan N, et al. Dectin-1 Activation controls maturation of β-1,3-glucan-containing phagosomes. J Biol Chem. 2013;288(22):16043–16054.
  • Bertuzzi M, Hayes G, Icheoku U, et al. Anti-Aspergillus activities of the respiratory epithelium in health and disease. J Fungi. 2018;4(1):8.
  • Han X, Yu R, Zhen D, et al. Β-1,3-Glucan-Induced Host Phospholipase D Activation is Involved in Aspergillus fumigatus Internalization into Type II Human Pneumocyte A549 Cells. PLoS ONE. 2011;6(7):e21468.
  • Bao Z, Han X, Chen F, et al. Evidence for the involvement of cofilin in Aspergillus fumigatus internalization into type II alveolar epithelial cells. BMC Microbiol. 2015;15(1). DOI:10.1186/s12866-015-0500-y
  • Clark H, Powell A, Simmons K, et al. ‘Endocytic markers associated with the Internalization and Processing of Aspergillus fumigatus Conidia by BEAS-2B Cells. mSphere. 2019;4(1). DOI:10.1128/mSphere.00663-18
  • Wasylnka J, Moore M. Uptake of Aspergillus fumigatus Conidia by Phagocytic and Nonphagocytic Cells In Vitro: quantitation using strains expressing green fluorescent protein. Infect Immun. 2002;70(6):3156–3163.
  • Wasylnka J, Hissen A, Wan A, et al. Intracellular and extracellular growth of Aspergillus fumigatus. Med Mycol. 2005;43(s1):27–30.
  • Schmidt H, Vlaic S, Krüger T, et al. Proteomics of Aspergillus fumigatus conidia-containing phagolysosomes identifies processes governing immune evasion. Molecular & Cellular Proteomics. 2018;17(6):1084–1096.
  • Seidel C, Moreno-Velásquez S, Ben-Ghazzi N, et al. Phagolysosomal survival enables non-lytic hyphal escape and ramification through lung epithelium during Aspergillus fumigatus Infection. Front Microbiol. 2020;11. DOI:10.3389/fmicb.2020.01955
  • Ben-Ghazzi N, Moreno-Velásquez S, Seidel C, et al. Characterisation of Aspergillus fumigatus endocytic trafficking within airway epithelial cells using high-resolution automated quantitative confocal microscopy. J Fungi. 2021;7(6):454.
  • Gross O, Poeck H, Bscheider M, et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature. 2009;459(7245):433–436.
  • Bretz C, Gersuk G, Knoblaugh S, et al. MyD88 signaling contributes to early pulmonary responses to Aspergillus fumigatus. Infect Immun. 2008;76(3):952–958.
  • Deguine J, Barton G (2014) ‘MyD88: a central player in innate immune signaling’ F1000Prime Reports, 6. doi: 10.12703/P6-97
  • Jhingran A, Kasahara S, Shepardson K, et al. Compartment-specific and sequential role of MyD88 and CARD9 in chemokine induction and innate defense during respiratory fungal infection. PLOS Pathogens. 2015;11(1):e1004589.
  • Jeong J, Lee K, Kim S, et al. Airway epithelial phosphoinositide 3-kinase-δ contributes to the modulation of fungi-induced innate immune response. Thorax. 2018;73(8):758–768.
  • Sun H, Xu X, Tian X, et al. Activation of NF-κB and respiratory burst following Aspergillus fumigatus stimulation of macrophages. Immunobiology. 2014;219(1):25–36.
  • Balloy V, Sallenave J, Wu Y, et al. Aspergillus fumigatus-induced Interleukin-8 synthesis by respiratory epithelial cells is controlled by the phosphatidylinositol 3-Kinase, p38 MAPK, and ERK1/2 Pathways and Not by the Toll-like Receptor-MyD88 Pathway. J Biol Chem. 2008;283(45):30513–30521.
  • Feldman M, Dutko R, Wood M, et al. Aspergillus fumigatus cell wall promotes apical airway epithelial recruitment of human neutrophils. Infect Immun. 2020;88(2). DOI:10.1128/IAI.00813-19
  • Kauffman H, Tomee J, van de Riet M, et al. Protease-dependent activation of epithelial cells by fungal allergens leads to morphologic changes and cytokine production. J Allergy Clin Immunol. 2000;105(6):1185–1193.
  • Watkins T, Liu H, Chung M, et al. Comparative transcriptomics of Aspergillus fumigatus strains upon exposure to human airway epithelial cells. Microb Genom. 2018;4(2). DOI:10.1099/mgen.0.000154
  • Rowley J, Namvar S, Gago S, et al. Differential proinflammatory Responses to Aspergillus fumigatus by airway epithelial cells in vitro are protease dependent. J Fungi. 2021;7(6):468.
  • Balenga N, Klichinsky M, Xie Z, et al. A fungal protease allergen provokes airway hyper-responsiveness in asthma. Nat Commun. 2015;6(1). DOI:10.1038/ncomms7763
  • Namvar S, Warn P, Farnell E, et al. Aspergillus fumigatus proteases, Asp f 5 and Asp f 13, are essential for airway inflammation and remodelling in a murine inhalation model. Clinical & Experimental Allergy. 2015;45(5):982–993.
  • Wiesner D, Merkhofer R, Ober C, et al. Club cell TRPV4 serves as a damage sensor driving lung allergic inflammation. Cell Host & Microbe. 2020;27(4):614–628.e6.
  • Zhang C, Liu X, Chen F, et al. Gliotoxin destructs the pulmonary epithelium barrier function by reducing cofilin oligomer formation to promote the dissolution of actin stress fibers. Microbial Pathogenesis. 2018;123:169–176.
  • Stephens-Romero S, Mednick A, Feldmesser M. The pathogenesis of fatal outcome in murine pulmonary aspergillosis depends on the neutrophil depletion strategy. Infect Immun. 2005;73(1):114–125.
  • Mehrad B, Strieter RM, Moore TA, et al. CXC chemokine receptor-2 ligands are necessary components of neutrophil-mediated host defense in invasive pulmonary aspergillosis. Journal of Immunology (Baltimore. 1999;163(11):6086–6094. Md. : 1950 PMID: 10570298.
  • Caffrey A, Lehmann M, Zickovich J, et al. IL-1α signaling is critical for leukocyte recruitment after pulmonary Aspergillus fumigatus Challenge. PLOS Pathogens. 2015;11(1):e1004625.
  • Caffrey-Carr A, Hilmer K, Kowalski C, et al. Host-derived leukotriene B4 is critical for resistance against invasive pulmonary Aspergillosis. Front Immunol. 2018;8. DOI:10.3389/fimmu.2017.01984
  • Ralph B, Lehoux M, Ostapska H, et al. The IL-1 receptor is required to maintain neutrophil viability and function during Aspergillus fumigatus Airway Infection. Front Immunol. 2021;12. DOI:10.3389/fimmu.2021.675294.
  • Snarr B, St-Pierre G, Ralph B, et al. Galectin-3 enhances neutrophil motility and extravasation into the airways during Aspergillus fumigatus infection. PLOS Pathogens. 2020;16(8):e1008741.
  • Gazendam R, van Hamme J, Tool A, et al. Human neutrophils use different mechanisms to kill Aspergillus fumigatus Conidia and Hyphae: evidence from phagocyte defects. J Immunol. 2015;196(3):1272–1283.
  • Leal S, Vareechon C, Cowden S, et al. Fungal antioxidant pathways promote survival against neutrophils during infection. J Clin Investig. 2012;122(7):2482–2498.
  • Taylor P, Roy S, Leal S, et al. Activation of neutrophils by autocrine IL-17A–IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORγt and dectin-2. Nat Immunol. 2013;15(2):143–151.
  • Bellocchio S, Moretti S, Perruccio K, et al. Tlrs govern neutrophil activity in Aspergillosis. J Immunol. 2004;173(12):7406–7415.
  • Levitz S, Diamond R. Mechanisms of resistance of Aspergillus fumigatus conidia to killing by neutrophils in vitro. J Infect Dis. 1985;152(1):33–42.
  • Washburn R, Gallin J, Bennett J. Oxidative killing of Aspergillus fumigatus proceeds by parallel myeloperoxidase-dependent and -independent pathways. Infect Immun. 1987;55(9):2088–2092.
  • Tkalcevic J, Novelli M, Phylactides M, et al. Impaired immunity and enhanced resistance to endotoxin in the absence of neutrophil elastase and cathepsin G. Immunity. 2000;12(2):201–210.
  • Stergiopoulou T, Meletiadis J, Roilides E, et al. Host-dependent patterns of tissue injury in invasive pulmonary Aspergillosis. Am J Clin Pathol. 2007;127(3):349–355.
  • Guo Y, Kasahara S, Jhingran A, et al. During Aspergillus Infection, Monocyte-Derived DCs, Neutrophils, and Plasmacytoid DCs Enhance Innate Immune Defense through CXCR3-Dependent Crosstalk. Cell Host; Microbe. 2020;28(1):104–116.e4.
  • Espinosa V, Jhingran A, Dutta O, et al. Inflammatory monocytes orchestrate innate antifungal immunity in the lung. PLOS Pathogens. 2014;10(2):e1003940.
  • Espinosa V, Dutta O, McElrath C, et al. Type III interferon is a critical regulator of innate antifungal immunity. Sci Immunol. 2017;2(16). DOI:10.1126/sciimmunol.aan5357
  • Bruns S, Kniemeyer O, Hasenberg M, et al. Production of extracellular traps against Aspergillus fumigatus in Vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin rod. PLOS Pathogens. 2010;6(4):e1000873.
  • Niedźwiedzka-Rystwej P, Repka W, Tokarz-Deptuła B, et al. “In sickness and in health” – how neutrophil extracellular trap (NET) works in infections, selected diseases and pregnancy. J Inflam. 2019;16(1). DOI:10.1186/s12950-019-0222-2
  • Urban C, Nett J. Neutrophil extracellular traps in fungal infection. Seminars in Cell & Developmental Biology. 2019;89:47–57.
  • Gray R. Nets in pneumonia: is just enough the right amount? Eur Respir J. 2018;51(4):1800619.
  • Bianchi M, Niemiec M, Siler U, et al. Restoration of anti-Aspergillus defense by neutrophil extracellular traps in human chronic granulomatous disease after gene therapy is calprotectin-dependent. J Allergy Clin Immunol. 2011;127(5):1243–1252.e7.
  • Silva J, Rodrigues N, Thompson‐souza G, et al. Mac‐1 Triggers neutrophil DNA extracellular trap formation to Aspergillus fumigatus independently of PAD4 histone citrullination. J Leukoc Biol. 2019;107(1):69–83.
  • McCormick A, Heesemann L, Wagener J, et al. Nets formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus. Microbes Infect. 2010;12(12–13):928–936.
  • Röhm M, Grimm M, D’auria A, et al. NADPH Oxidase promotes neutrophil extracellular trap formation in pulmonary aspergillosis. Infect Immun. 2014;82(5):1766–1777.
  • Byrne A, Mathie S, Gregory L, et al. Pulmonary macrophages: key players in the innate defence of the airways. Thorax. 2015;70(12):1189–1196.
  • Heung L. Monocytes and the host response to fungal pathogens. Front Cell Infect Microbiol. 2020;10:10.
  • Ibrahim-Granet O, Philippe B, Boleti H, et al. Phagocytosis and intracellular fate of Aspergillus fumigatus conidia in alveolar macrophages. Infect Immun. 2003;71(2):891–903.
  • Marr K, Koudadoust M, Black M, et al. Early events in macrophage killing of Aspergillus fumigatus Conidia: new flow cytometric viability assay. Clinical Diagnostic Laboratory Immunology. 2001;8(6):1240–1247.
  • Philippe B, Ibrahim-Granet O, Prévost M, et al. Killing of Aspergillus fumigatus by alveolar macrophages is mediated by reactive oxidant Intermediates. Infect Immun. 2003;71(6):3034–3042.
  • Luther K, Torosantucci A, Brakhage A, et al. Phagocytosis of Aspergillus fumigatus conidia by murine macrophages involves recognition by the dectin-1 beta-glucan receptor and Toll-like receptor 2. Cell Microbiol. 2007;9(2):368–381.
  • Babior B, Kipnes R, Curnutte J. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Investig. 1973;52(3):741–744.
  • Forman H, Torres M. Reactive oxygen species and cell signaling. Am J Respir Crit Care Med. 2002;166(supplement_1):S4–8.
  • Gersuk G, Underhill D, Zhu L, et al. Dectin-1 and TLRs permit macrophages to distinguish between different Aspergillus fumigatus Cellular States. J Immunol. 2006;176(6):3717–3724.
  • Grimm M, Vethanayagam R, Almyroudis N, et al. Monocyte- and macrophage-targeted NADPH oxidase mediates antifungal host defense and regulation of acute inflammation in mice. J Immunol. 2013;190(8):4175–4184.
  • Cornish E, Hurtgen B, McInnerney K, et al. Reduced nicotinamide adenine dinucleotide phosphate oxidase-independent resistance to Aspergillus fumigatus in alveolar macrophages. J Immunol. 2008;180(10):6854–6867.
  • Margalit A, Kavanagh K, Braus G. The innate immune response to Aspergillus fumigatus at the alveolar surface. FEMS Microbiol Rev. 2015;39(5):670–687.
  • Shekhova E, Silverman N. Mitochondrial reactive oxygen species as major effectors of antimicrobial immunity. PLOS Pathogens. 2020;16(5):e1008470.
  • Hatinguais R, Pradhan A, Brown G, et al. Mitochondrial reactive oxygen species regulate immune responses of macrophages to Aspergillus fumigatus. Front Immunol. 2021;12. DOI:10.3389/fimmu.2021.641495
  • Bhatia S, Fei M, Yarlagadda M, et al. Rapid host defense against Aspergillus fumigatus Involves alveolar macrophages with a predominance of alternatively activated phenotype. PLoS ONE. 2011;6(1):e15943.
  • Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5. DOI:10.3389/fimmu.2014.00491
  • Tracy M, Okorie C, Foley E, et al. Allergic Bronchopulmonary Aspergillosis. J Fungi. 2016;2(2):17.
  • Parameswaran N, Patial S. Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr. 2010;20(2):87–103.
  • Jia X, Tang B, Zhu L, et al. CARD9 mediates Dectin-1–induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity. J Exp Med. 2014;211(11):2307–2321.
  • Lee D, Kim H. Innate immunity induced by fungal β-glucans via dectin-1 signaling pathway. Int J Med Mushrooms. 2014;16(1):1–16.
  • Valsecchi I, Lai J, Stephen-Victor E, et al. Assembly and disassembly of Aspergillus fumigatus conidial rodlets. The Cell Surface. 2019;5:100023.
  • Chamilos G, Akoumianaki T, Kyrmizi I, et al. Melanin targets LC3-associated phagocytosis (LAP): a novel pathogenetic mechanism in fungal disease. Autophagy. 2016;12(5):888–889.
  • Akoumianaki T, Vaporidi K, Diamantaki E, et al. Uncoupling of IL-6 signaling and LC3-associated phagocytosis drives immunoparalysis during sepsis. Cell Host Microbe. 2021;29(8):1277–1293.e6.
  • Tam J, Mansour M, Khan N, et al. Dectin-1–dependent LC3 recruitment to phagosomes enhances fungicidal activity in macrophages. J Infect Dis. 2014;210(11):1844–1854.
  • Fatima N, Upadhyay T, Ahmad F, et al. Particulate β-glucan activates early and delayed phagosomal maturation and autophagy within macrophage in a NOX-2 dependent manner. Life Sci. 2021;266:118851.
  • Dubourdeau M, Athman R, Balloy V, et al. Aspergillus fumigatus induces innate immune responses in alveolar macrophages through the MAPK pathway independently of TLR2 and TLR4. J Immunol. 2006;177(6):3994–4001.
  • Shah A, Kannambath S, Herbst S, et al. Calcineurin orchestrates lateral transfer of Aspergillus fumigatus during macrophage cell death. Am J Respir Crit Care Med. 2016;194(9):1127–1139.
  • Gresnigt M, Jaeger M, Subbarao Malireddi R, et al. The absence of NOD1 enhances killing of Aspergillus fumigatus through modulation of dectin-1 Expression. Front Immunol. 2017;8. DOI:10.3389/fimmu.2017.01777
  • Wang X, Caffrey-Carr A, Liu K, et al. MDA5 is an essential sensor of a pathogen-associated molecular pattern associated with vitality that is necessary for host resistance against Aspergillus fumigatus’. J Immunol. 2020;205(11):3058–3070.
  • Wang X, Cunha C, Grau M, et al. MAVS expression in alveolar macrophages is essential for host resistance against Aspergillus fumigatus. J Immunol. 2022;209(2):346–353.
  • Bechman K, Galloway J, Winthrop K. Small-molecule protein kinases inhibitors and the risk of fungal infections. Current Fungal Infection Reports. 2019;13(4):229–243.
  • Kimmig L, Wu D, Gold M, et al. IL-6 inhibition in critically Ill COVID-19 patients is associated with increased secondary infections. Front Med (Lausanne). 2020;7. DOI:10.3389/fmed.2020.583897
  • Cunha C, Di Ianni M, Bozza S, et al. Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood. 2010;116(24):5394–5402.
  • Smith N, Bromley M, Denning D, et al. Elevated levels of the neutrophil chemoattractant pro–platelet basic protein in macrophages from individuals with chronic and allergic Aspergillosis. J Infect Dis. 2014;211(4):651–660.
  • Smith N, Hankinson J, Simpson A, et al. A prominent role for the IL1 pathway and IL15 in susceptibility to chronic cavitary pulmonary aspergillosis. Clin Microbiol Infect. 2014;20(8):O480–488.
  • Cunha C, Gonçalves S, Duarte-Oliveira C, et al. IL-10 overexpression predisposes to invasive aspergillosis by suppressing antifungal immunity. J Allergy Clin Immunol. 2017;140(3):867–870.e9.
  • Gresnigt M, Cunha C, Jaeger M, et al. Genetic deficiency of NOD2 confers resistance to invasive aspergillosis. Nat Commun. 2018;9(1). DOI:10.1038/s41467-018-04912-3
  • Sueiro-Olivares M, Scott J, Gago S, et al. Fungal and host protein persulfidation are functionally correlated and modulate both virulence and antifungal response. PLoS Biol. 2021;19(6):e3001247.
  • Bozza S, Gaziano R, Spreca A, et al. Dendritic Cells transport conidia and hyphae of Aspergillus fumigatus from the airways to the draining lymph nodes and initiate disparate th responses to the fungus. J Immunol. 2002;168(3):1362–1371.
  • Serrano-Gómez D, Antonio Leal J, Corbí A. DC-SIGN mediates the binding of Aspergillus fumigatus and keratinophylic fungi by human dendritic cells. Immunobiology. 2005;210(2–4):175–183.
  • Gafa V, Lande R, Gagliardi M, et al. Human dendritic cells following Aspergillus fumigatus Infection Express the CCR7 receptor and a differential pattern of interleukin-12 (IL-12), IL-23, and IL-27 Cytokines, which lead to a Th1 response. Infect Immun. 2006;74(3):1480–1489.
  • Gafa V, Remoli M, Giacomini E, et al. In vitro infection of human dendritic cells by Aspergillus fumigatus conidia triggers the secretion of chemokines for neutrophil and Th1 lymphocyte recruitment. Microbes Infect. 2007;9(8):971–980.
  • Furlong-Silva J, Cook P, LeibundGut-Landmann S. Fungal-mediated lung allergic airway disease: the critical role of macrophages and dendritic cells. PLOS Pathogens. 2022;18(7):e1010608.
  • Zelante T, Wong A, Ping T, et al. CD103+ dendritic cells control Th17 cell function in the lung. Cell Rep. 2015;12(11):1789–1801.
  • Schlitzer A, McGovern N, Teo P, et al. IRF4 Transcription Factor-Dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity. 2013;38(5):970–983.
  • Bozza S, Perruccio K, Montagnoli C, et al. A dendritic cell vaccine against invasive aspergillosis in allogeneic hematopoietic transplantation. Blood. 2003;102(10):3807–3814.
  • Bogorodskiy A, Bolkhovitina E, Gensch T, et al. Murine intraepithelial dendritic cells interact with phagocytic cells during Aspergillus fumigatus-induced inflammation. Front Immunol. 2020;11:11.
  • Loures F, Röhm M, Lee C, et al. Recognition of Aspergillus fumigatus hyphae by human plasmacytoid dendritic cells is mediated by Dectin-2 and Results in formation of extracellular traps. PLOS Pathogens. 2015;11(2):e1004643.
  • Ramirez-Ortiz Z, Lee C, Wang J, et al. A nonredundant role for plasmacytoid dendritic cells in host defense against the human fungal pathogen Aspergillus fumigatus. Cell Host & Microbe. 2011;9(5):415–424.
  • Park S, Burdick M, Brix W, et al. Neutropenia enhances lung dendritic cell recruitment in response to Aspergillus via a Cytokine-to-Chemokine amplification loop. J Immunol. 2010;185(10):6190–6197.
  • Rivera A, Hohl T, Collins N, et al. Dectin-1 diversifies Aspergillus fumigatus–specific T cell responses by inhibiting T helper type 1 CD4 T cell differentiation. J Exp Med. 2011;208(2):369–381.
  • Phadke A, Akangire G, Park S, et al. The role of CC Chemokine receptor 6 in host defense in a model of invasive pulmonary aspergillosis. Am J Respir Crit Care Med. 2007;175(11):1165–1172.
  • Braedel S, Radsak M, Einsele H, et al. Aspergillus fumigatus antigens activate innate immune cells via toll-like receptors 2 and 4. Br J Haematol. 2004;125(3):392–399.
  • Gafa V, Remoli M, Giacomini E, et al. Enhancement of anti-Aspergillus T helper type 1 response by interferon-β-conditioned dendritic cells. Immunology. 2010;131(2):282–288.
  • Morton C, Varga J, Hornbach A, et al. The temporal dynamics of differential gene expression in Aspergillus fumigatus Interacting with human immature dendritic cells in vitro. PLoS ONE. 2011;6(1):e16016.
  • Morton C, Fliesser M, Dittrich M, et al. Gene expression profiles of human dendritic cells interacting with Aspergillus fumigatus in a bilayer model of the alveolar epithelium/endothelium interface. PLoS ONE. 2014;9(5):e98279.
  • Veit G, Avramescu R, Chiang A, et al. From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. ?Mol Biol Cell. 2016;27(3):424–433.
  • Saint-Criq V, Gray M. Role of CFTR in epithelial physiology. Cell Mol Life Sci. 2016;74(1):93–115.
  • Durie P, Kent G, Phillips M, et al. Characteristic multiorgan pathology of cystic fibrosis in a long-living cystic fibrosis transmembrane regulator knockout murine model. Am J Pathol. 2004;164(4):1481–1493.
  • Ooi C, Dorfman R, Cipolli M, et al. Type of CFTR mutation determines risk of pancreatitis in patients with cystic fibrosis. Gastroenterology. 2011;140(1):153–161.
  • Dupuis A, Keenan K, Ooi C, et al. Prevalence of meconium ileus marks the severity of mutations of the cystic fibrosis transmembrane conductance Regulator (CFTR) gene. Genet Med. 2016;18(4):333–340.
  • Marchand E, Delaunois L, Brancaleone P, et al. Frequency of cystic fibrosis transmembrane conductance regulator gene mutations and 5T allele in patients with allergic bronchopulmonary aspergillosis. Chest. 2001;119(3):762–767.
  • Hill D, Vasquez P, Mellnik J, et al. A biophysical basis for mucus solids concentration as a candidate biomarker for airways disease. PLoS ONE. 2014;9(2):e87681.
  • Rubin B, Thornton D. Dropping acid: why is cystic fibrosis mucus abnormal? Eur Respir J. 2018;52(6):1802057.
  • Turcios N. Cystic fibrosis lung disease: an overview. Respir Care. 2019;65(2):233–251.
  • Renders N, Verbrugh H, Van Belkum A. Dynamics of bacterial colonisation in the respiratory tract of patients with cystic fibrosis. Infect Genet Evol. 2001;1(1):29–39.
  • Coutinho H, Falcão-Silva V, Gonçalves G. Pulmonary bacterial pathogens in cystic fibrosis patients and antibiotic therapy: a tool for the health workers. International Archives of Medicine. 2008;1(1):24.
  • Hector A, Chotirmall S, Lavelle G, et al. Chitinase activation in patients with fungus-associated cystic fibrosis lung disease. J Allergy Clin Immunol. 2016;138(4):1183–1189.e4.
  • Singh A, Ralhan A, Schwarz C, et al. Fungal Pathogens in CF airways: leave or treat? Mycopathologia. 2017;183(1):119–137.
  • Düesberg U, Wosniok J, Naehrlich L, et al. Risk factors for respiratory Aspergillus fumigatus in German cystic fibrosis patients and impact on lung function. Sci Rep. 2020;10(1). DOI:10.1038/s41598-020-75886-w
  • Soret P, Vandenborght L, Francis F, et al. Respiratory mycobiome and suggestion of inter-kingdom network during acute pulmonary exacerbation in cystic fibrosis. Sci Rep. 2020;10(1). DOI:10.1038/s41598-020-60015-4
  • Cuthbertson L, Felton I, James P, et al. The fungal airway microbiome in cystic fibrosis and non-cystic fibrosis bronchiectasis. J Cystic Fibrosis. 2021;20(2):295–302.
  • Ross B, Lofgren L, Ashare A, et al. Aspergillus fumigatus In-Host HOG pathway mutation for cystic fibrosis lung microenvironment persistence. MBio. 2021;12(4). DOI:10.1128/mBio.02153-21
  • Engel T, Verweij P, van den Heuvel J, et al. Parasexual recombination enables Aspergillus fumigatus to persist in cystic fibrosis. ERJ Open Res. 2020;6(4):00020–2020.
  • Burgel P, Paugam A, Hubert D, et al. Aspergillus fumigatus in the cystic fibrosis lung: pros and cons of azole therapy. Infect Drug Resist. 2016;9:229–238.
  • Hong G, Alby K, Ng S, et al. The presence of Aspergillus fumigatus is associated with worse respiratory quality of life in cystic fibrosis. J Cystic Fibrosis. 2020;19(1):125–130.
  • Mall M, Hartl D. CFTR: cystic fibrosis and beyond. Eur Respir J. 2014;44(4):1042–1054.
  • Inglis S, Corboz M, Ballard S. Effect of anion secretion inhibitors on mucin content of airway submucosal gland ducts. Am J Physiol Lung Cell Mol Physiol. 1998;274(5):L762–766.
  • Elborn S, Vallieres E. Cystic fibrosis gene mutations: evaluation and assessment of disease severity. Advances in Genomics and Genetics. 2014;161. DOI:10.2147/AGG.S53768
  • Malhotra S, Hayes D, Wozniak D. Cystic Fibrosis and Pseudomonas aeruginosa: the Host-Microbe Interface. Clinical Microbiology Reviews. 2019;32(3). DOI:10.1128/CMR.00138-18
  • Warris A, Bercusson A, Armstrong-James D. Aspergillus colonization and antifungal immunity in cystic fibrosis patients. Med Mycol. 2019;57(Supplement_2):S118–126.
  • Matsui H, Grubb B, Tarran R, et al. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell. 1998;95(7):1005–1015.
  • Åstrand A, Hemmerling M, Root J, et al. Linking increased airway hydration, ciliary beating, and mucociliary clearance through ENaC inhibition. Am J Physiol Lung Cell Mol Physiol. 2015;308(1):L22–32.
  • Goldberg J, Pier G. The role of the CFTR in susceptibility to Pseudomonas aeruginosa infections in cystic fibrosis. Trends Microbiol. 2000;8(11):514–520.
  • Haq I, Gray M, Garnett J, et al. Airway surface liquid homeostasis in cystic fibrosis: pathophysiology and therapeutic targets. Thorax. 2015;71(3):284–287.
  • Coakley R, Grubb B, Paradiso A, et al. Abnormal surface liquid pH regulation by cultured cystic fibrosis bronchial epithelium. Proc Nat Acad Sci. 2003;100(26):16083–16088.
  • Abou Alaiwa M, Reznikov L, Gansemer N, et al. pH modulates the activity and synergism of the airway surface liquid antimicrobials β-defensin-3 and LL-37. Proc Nat Acad Sci. 2014;111(52):18703–18708.
  • Rehman T, Karp P, Tan P, et al. Inflammatory cytokines TNF-α and IL-17 enhance the efficacy of cystic fibrosis transmembrane conductance regulator modulators. J Clin Investig. 2021;131(16). DOI:10.1172/JCI150398
  • Smith J, Travis S, Greenberg E, et al. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell. 1996;85(2):229–236.
  • Pezzulo A, Tang X, Hoegger M, et al. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature. 2012;487(7405):109–113.
  • Song Y, Salinas D, Nielson D, et al. Hyperacidity of secreted fluid from submucosal glands in early cystic fibrosis. Am J Physiol Cell Physiol. 2006;290(3):C741–749.
  • Hoegger M, Fischer A, McMenimen J, et al. Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis. Science. 2014;345(6198):818–822.
  • Caverly L, LiPuma J. Good cop, bad cop: anaerobes in cystic fibrosis airways. Eur Respir J. 2018;52(1):1801146.
  • Takuma T, Okada K, Uchida Y, et al. Invasive pulmonary aspergillosis resulting in respiratory failure during neutrophil recovery from postchemotherapy neutropenia in three patients with acute leukaemia. J Intern Med. 2002;252(2):173–177.
  • Grahl N, Puttikamonkul S, Macdonald J, et al. In vivo hypoxia and a fungal alcohol dehydrogenase influence the pathogenesis of invasive pulmonary aspergillosis. PLOS Pathogens. 2011;7(7):e1002145.
  • Gresnigt M, Rekiki A, Rasid O, et al. Reducing hypoxia and inflammation during invasive pulmonary aspergillosis by targeting the Interleukin-1 receptor. Sci Rep. 2016;6(1). DOI:10.1038/srep26490
  • Bidula S, Schelenz S, Hogan DA. A sweet response to a sour situation: the role of soluble pattern recognition receptors in the innate immune response to invasive Aspergillus fumigatus Infections. PLOS Pathogens. 2016;12(7):e1005637.
  • Patin E, Thompson A, Orr S. Pattern recognition receptors in fungal immunity. Seminars in Cell & Developmental Biology. 2019;89:24–33.
  • Deban L, Jaillon S, Garlanda C, et al. Pentraxins in innate immunity: lessons from PTX3. Cell Tissue Res. 2011;343(1):237–249.
  • Kang Y, Yu Y, Lu L. The role of pentraxin 3 in Aspergillosis: reality and prospects. Mycobiology. 2020;48(1):1–8.
  • Garlanda C, Hirsch E, Bozza S, et al. Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature. 2002;420(6912):182–186.
  • Bigot J, Guillot L, Guitard J, et al. Bronchial epithelial cells on the front line to fight lung infection-causing Aspergillus fumigatus. Front Immunol. 2020;11:11.
  • Bertuzzi M, Howell G, Thomson D, et al. Epithelial uptake of Aspergillus fumigatus drives efficient fungal clearance in vivo and is aberrant in Chronic Obstructive Pulmonary Disease (COPD). bioRxiv. 2022.
  • Chaudhary N, Datta K, Askin FB, et al. Cystic fibrosis transmembrane conductance regulator regulates epithelial cell response to Aspergillus and resultant pulmonary inflammation. Am J Respir Crit Care Med. 2012;185(3):301–310.
  • Di A, Brown ME, Deriy LV, et al. CFTR regulates phagosome acidification in macrophages and alters bactericidal activity. Nat Cell Biol. 2006;8(9):933–944.
  • Law SM, Stanfield SJ, Hardisty GR, et al. Human cystic fibrosis monocyte derived macrophages display no defect in acidification of phagolysosomes when measured by optical nanosensors. J Cystic Fibrosis. 2020;19(2):203–210.
  • Wasylnka JA, Moore MM, Kozel TR. Adhesion of Aspergillus species to extracellular matrix proteins: evidence for involvement of negatively charged carbohydrates on the conidial surface. Infect Immun. 2000;68(6):3377–3384.
  • Bromley I, Donaldson K. Binding of Aspergillus fumigatus spores to lung epithelial cells and basement membrane proteins: relevance to the asthmatic lung. Thorax. 1996;51(12):1203–1209.
  • Frantz C, Stewart K, Weaver V. The extracellular matrix at a glance. J Cell Sci. 2010;123(24):4195–4200.
  • Gil M, Peñalver M, Lopez-Ribot J, et al. Binding of extracellular matrix proteins to Aspergillus fumigatus conidia. Infect Immun. 1996;64(12):5239–5247.
  • Ulrich M, Worlitzsch D, Viglio S, et al. Alveolar inflammation in cystic fibrosis. J Cyst Fibros. 2010;9(3):217–227.
  • Cowley A, Thornton D, Denning D, et al. Aspergillosis and the role of mucins in cystic fibrosis. Pediatr Pulmonol. 2016;52(4):548–555.
  • Dewi I, van de Veerdonk F, Gresnigt M. The multifaceted role of T-helper responses in host defense against Aspergillus fumigatus. J Fungi. 2017;3(4):55.
  • Beswick E, Amich J, Gago S. Factoring in the complexity of the cystic fibrosis lung to understand Aspergillus fumigatus and Pseudomonas aeruginosa Interactions. Pathogens. 2020;9(8):639.
  • Carsin A, Romain T, Ranque S, et al. Aspergillus fumigatus in cystic fibrosis: an update on immune interactions and molecular diagnostics in allergic bronchopulmonary aspergillosis. Allergy. 2017;72(11):1632–1642.
  • Müller C, Braag S, Herlihy J, et al. Enhanced IgE allergic response to Aspergillus fumigatus in CFTR−/− mice. Lab Invest. 2005;86(2):130–140.
  • Müller C, Braag S, Keeler A, et al. Lack of Cystic fibrosis transmembrane conductance regulator in CD3+Lymphocytes leads to aberrant cytokine secretion and hyperinflammatory adaptive immune responses. Am J Respir Cell Mol Biol. 2011;44(6):922–929.
  • Stolbrink M, Mortimer K. Collision of communicable and non-communicable disease epidemics—the case of HIV and COPD. Lancet Glob Health. 2018;6(2):e126–127.
  • Soriano J, Kendrick P, Paulson K, et al., . (2020) ‘Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017’, Lancet Respir Med, 8(6), pp.585–596. doi: 10.1016/S2213-2600(20)30105-3
  • Vestbo J, Hurd S, Agustí A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;187(4):347–365.
  • Bourdin A, Burgel P, Chanez P, et al. Recent advances in COPD: pathophysiology, respiratory physiology and clinical aspects, including comorbidities. Eur Respir Rev. 2009;18(114):198–212.
  • Josephs L, Culliford D, Johnson M, et al. COPD overdiagnosis in primary care: a UK observational study of consistency of airflow obstruction. NPJ Prim Care Respir Med. 2019;29(1). DOI:10.1038/s41533-019-0145-7
  • Patel I. Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations. Thorax. 2002;57(9):759–764.
  • Wang Z, Bafadhel M, Haldar K, et al. Lung microbiome dynamics in COPD exacerbations. Eur Respir J. 2016;47(4):1082–1092.
  • Leung J, Tiew P, Mac Aogáin M, et al. The role of acute and chronic respiratory colonization and infections in the pathogenesis of COPD. Respirology. 2017;22(4):634–650.
  • Barnes P. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016;138(1):16–27.
  • Imbert S, Bresler P, Boissonnas A, et al. Calcineurin inhibitors impair neutrophil activity against Aspergillus fumigatus in allogeneic hematopoietic stem cell transplant recipients. J Allergy Clin Immunol. 2016;138(3):860–868.
  • Jasper A, McIver W, Sapey E, et al. Understanding the role of neutrophils in chronic inflammatory airway disease. F1000res. 2019;8:557.
  • Brightling C, Greening N. Airway inflammation in COPD: progress to precision medicine. Eur Respir J. 2019;54(2):1900651.
  • Lonergan M, Dicker A, Crichton M, et al. Blood neutrophil counts are associated with exacerbation frequency and mortality in COPD. Respir Res. 2020;21(1). DOI:10.1186/s12931-020-01436-7
  • Bafadhel M, Mckenna S, Agbetile J, et al. Aspergillus fumigatus during stable state and exacerbations of COPD. Eur Respir J. 2013;43(1):64–71.
  • Mircescu M, Lipuma L, van Rooijen N, et al. Essential role for neutrophils but not alveolar macrophages at early time points following Aspergillus fumigatus infection. J Infect Dis. 2009;200(4):647–656.
  • Rovina N, Koutsoukou A, Koulouris N. Inflammation and Immune Response in COPD: where Do We Stand? Mediators Inflamm. 2013;2013:1–9.
  • Faner R, Sobradillo P, Noguera A, et al. The inflammasome pathway in stable COPD and acute exacerbations. ERJ Open Res. 2016;2(3):00002–2016.
  • Del Sero G. Antifungal type 1 responses are upregulated in IL-10-deficient mice. Microbes Infect. 1999;1(14):1169–1180.
  • van de Veerdonk F, Joosten L, Shaw P, et al. The inflammasome drives protective Th1 and Th17 cellular responses in disseminated candidiasis. Eur J Immunol. 2011;41(8):2260–2268.
  • Speakman E, Dambuza I, Salazar F, et al. T cell antifungal immunity and the role of C-Type Lectin Receptors. Trends Immunol. 2020;41(1):61–76.
  • Jolink H, de Boer R, Hombrink P, et al. Pulmonary immune responses against Aspergillus fumigatus are characterized by high frequencies of IL-17 producing T-cells. J Infect. 2017;74(1):81–88.
  • Mirkov I, El-Muzghi AA, Djokic J, et al. Pulmonary immune responses to Aspergillus fumigatus in rats. Biomedical Environ Sci. 2014;27(9):684–694.
  • Romani L, Fallarino F, De Luca A, et al. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature. 2008;451(7175):211–215.
  • Imani S, Salimian J, Fu J, et al. Th17/treg-related cytokine imbalance in sulfur mustard exposed and stable chronic obstructive pulmonary (COPD) patients: correlation with disease activity. Immunopharmacol Immunotoxicol. 2016;38(4):270–280.
  • Geng W, He H, Zhang Q, et al. Th17 cells are involved in mouse chronic obstructive pulmonary disease complicated with invasive pulmonary aspergillosis. Chinese Med J. 2020;134(5):555–563.
  • Lindén A, Andelid K, Tengvall S, et al. Systemic cytokine signaling via IL-17 in smokers with obstructive pulmonary disease: a link to bacterial colonization? Int J Chron Obstruct Pulmon Dis. 2015;689. DOI:10.2147/COPD.S76273
  • Everaerts S, Lagrou K, Vermeersch K, et al. Aspergillus fumigatus detection and risk factors in patients with COPD–Bronchiectasis overlap. Int J Mol Sci. 2018;19(2):523.
  • Aghapour M, Raee P, Moghaddam S, et al. Airway epithelial barrier dysfunction in chronic obstructive pulmonary disease: role of cigarette smoke exposure. Am J Respir Cell Mol Biol. 2018;58(2):157–169.
  • Heijink I, Noordhoek J, Timens W, et al. Abnormalities in airway epithelial junction formation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;189(11):1439–1442.
  • Lababidi R, Cane J, Bafadhel M. Tight junction molecules are unresponsive in the epithelium of COPD patients during RV infection. Mechanisms of Lung Injury and Repair. 2021. DOI:10.1183/13993003.congress-2021.PA3619
  • James A, Wenzel S. Clinical relevance of airway remodelling in airway diseases. Eur Respir J. 2007;30(1):134–155.
  • Namvar S, Labram B, Rowley J, et al. Aspergillus fumigatus—host Interactions mediating airway wall remodelling in asthma. J Fungi. 2022;8(2):159.
  • Hogg J, Chu F, Utokaparch S, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(26):2645–2653.
  • Tian P, Wen F. Clinical significance of airway mucus hypersecretion in chronic obstructive pulmonary disease. J Transl Int Med. 2015;3(3):89–92.
  • Shen Y, Huang S, Kang J, et al. Management of airway mucus hypersecretion in chronic airway inflammatory disease: Chinese expert consensus (English edition). Int J Chron Obstruct Pulmon Dis. 2018;13:399–407.
  • Wu X, Lee B, Zhu L, et al. Exposure to mold proteases stimulates mucin production in airway epithelial cells through Ras/Raf1/ERK signal pathway. PLoS ONE. 2020;15(4):e0231990.
  • Taccone F, Van den Abeele A, Bulpa P, et al. Epidemiology of invasive aspergillosis in critically ill patients: clinical presentation, underlying conditions, and outcomes. crit care. 2015;19(1). DOI:10.1186/s13054-014-0722-7
  • Gu Y, Ye X, Liu Y, et al. A risk-predictive model for invasive pulmonary aspergillosis in patients with acute exacerbation of chronic obstructive pulmonary disease. Respir Res. 2021;22(1). DOI:10.1186/s12931-021-01771-3
  • Ng T, Robson G, Denning D. Hydrocortisone-enhanced growth of Aspergillus spp.: implications for pathogenesis. Microbiology. 1994;140(9):2475–2479.
  • Gonçalves S, Lagrou K, Duarte-Oliveira C, et al. The microbiome-metabolome crosstalk in the pathogenesis of respiratory fungal diseases. Virulence. 2016;8(6):673–684.
  • Schauwvlieghe A, Rijnders B, Philips N, et al. Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: a retrospective cohort study. Lancet Respir Med. 2018;6(10):782–792.
  • Husni R, Gordon S, Longworth D, et al. Cytomegalovirus Infection is a Risk Factor for Invasive Aspergillosis in Lung Transplant Recipients. Clinl Infect Dis. 1998;26(3):753–755.
  • Alanio A, Dellière S, Fodil S, et al. Prevalence of putative invasive pulmonary aspergillosis in critically ill patients with COVID-19. Lancet Respir Med. 2020;8(6):e48–49.
  • Wauters J, Baar I, Meersseman P, et al. Invasive pulmonary aspergillosis is a frequent complication of critically ill H1N1 patients: a retrospective study. Intensive care Med. 2012;38(11):1761–1768.
  • Prattes J, Wauters J, Giacobbe D, et al. Risk factors and outcome of pulmonary aspergillosis in critically ill coronavirus disease 2019 patients—a multinational observational study by the European confederation of medical mycology. Clin Microbiol Infect. 2022;28(4):580–587.
  • Gold J, Ahmad F, Cisewski J, et al. Increased deaths from fungal infections during the COVID-19 pandemic—national vital statistics system, United States, January 2020–December 2021. Clinl Infect Dis. 2022. DOI:10.1093/cid/ciac489
  • Hoenigl M, Seidel D, Sprute R, et al. COVID-19-associated fungal infections. Nat Microbiol. 2022;7(8):1127–1140.
  • Manohar P, Loh B, Athira S, et al. Secondary bacterial infections during pulmonary viral disease: phage therapeutics as alternatives to antibiotics? Front Microbiol. 2020;11. DOI:10.3389/fmicb.2020.01434
  • Robinson K. Mechanistic basis of super-infection: influenza-associated invasive pulmonary Aspergillosis. J Fungi. 2022;8(5):428.
  • Tobin J, Nickolich K, Ramanan K, et al. Influenza suppresses neutrophil recruitment to the lung and exacerbates secondary invasive pulmonary Aspergillosis. J Immunol. 2020;205(2):480–488.
  • Seldeslachts L, Vanderbeke L, Fremau A, et al. Early oseltamivir reduces risk for influenza-associated aspergillosis in a double-hit murine model. Virulence. 2021;12(1):2493–2508.
  • Dewi I, Cunha C, Jaeger M, et al. Neuraminidase and SIGLEC15 modulate the host defense against pulmonary aspergillosis. Cell Reports Medicine. 2021;2(5):100289.
  • Davido B, Lemarie B, Gault E, et al. Superinfection is associated with short-term outcome and mortality in viral respiratory tract infections during the fall-winter seasons 2016-2018 in the greater Paris area: the SUPERFLUOUS study. Inter J Infect Dis. 2022;119:217–224.
  • Rijnders B, Schauwvlieghe A, Wauters J. Influenza-associated pulmonary aspergillosis: a local or global lethal combination? Clinl Infect Dis. 2020;71(7):1764–1767.
  • Gago S, Denning D, Bowyer P. Pathophysiological aspects of Aspergillus colonization in disease. Med Mycol. 2018;57(Supplement_2):S219–227.
  • Dancer P, Pickard A, Potocka W, et al. Mutual inhibition of airway epithelial responses supports viral and fungal co-pathogenesis during coinfection. bioRxiv. 2022 04 13:488236
  • Seelbinder B, Wallstabe J, Marischen L, et al. Triple RNA-seq reveals synergy in a human virus-fungus co-infection model. Cell Rep. 2020;33(7):108389.
  • Nicolas de Lamballerie C, Pizzorno A, Fouret J, et al. Transcriptional profiling of immune and inflammatory responses in the context of SARS-CoV-2 fungal superinfection in a human airway epithelial model. Microorganisms. 2020;8(12):1974.
  • Gale M, Sen G. Viral Evasion of the Interferon System. Journal of Interferon & Cytokine Research. 2009;29(9):475–476.
  • Schulz K, Mossman K. Viral evasion strategies in type I IFN signaling – a summary of recent developments. Front Immunol. 2016;7. DOI:10.3389/fimmu.2016.00498
  • Cenci E, Mencacci A, Del Sero G, et al. Interleukin‐4 Causes susceptibility to invasive pulmonary aspergillosis through suppression of protective type I responses. J Infect Dis. 1999;180(6):1957–1968.
  • Delsing C, Gresnigt M, Leentjens J, et al. Interferon-gamma as adjunctive immunotherapy for invasive fungal infections: a case series. BMC Infect Dis. 2014;14(1). DOI:10.1186/1471-2334-14-166
  • Hashimoto K, Graham B, Ho S, et al. Respiratory syncytial virus in allergic lung inflammation increases Muc5ac and Gob-5. Am J Respir Crit Care Med. 2004;170(3):306–312.
  • Hewson C, Haas J, Bartlett N, et al. Rhinovirus induces MUC5AC in a human infection model and in vitro via NF- B and EGFR pathways. Eur Respir J. 2010;36(6):1425–1435.
  • Pittet L, Hall-Stoodley L, Rutkowski M, et al. Influenza virus infection decreases tracheal mucociliary velocity and clearance of streptococcus pneumoniae. Am J Respir Cell Mol Biol. 2010;42(4):450–460.
  • de Bentzmann S, Tristan A, Etienne J, et al. Staphylococcus aureus isolates associated with necrotizing pneumonia bind to basement membrane type I and IV collagens and laminin. J Infect Dis. 2004;190(8):1506–1515.
  • Leng L, Cao R, Ma J, et al. Pathological features of COVID-19-associated lung injury: a preliminary proteomics report based on clinical samples. Signal Transduct Target Ther. 2020;5(1). DOI:10.1038/s41392-020-00355-9
  • Wang H, Ding Y, Li X, et al. Fatal aspergillosis in a patient with SARS who was treated with corticosteroids. N Engl J Med. 2003;349(5):507–508.
  • Rouzé A, Lemaitre E, Martin-Loeches I, et al., Voicu, F., Arrive. ‘Invasive pulmonary aspergillosis among intubated patients with SARS-CoV-2 or influenza pneumonia: a European multicenter comparative cohort study’, crit care. 2022;26(1). doi: 10.1186/s13054-021-03874-1
  • Brüggemann R, van de Veerdonk F, Verweij P. The challenge of managing COVID-19 associated pulmonary Aspergillosis. Clinl Infect Dis. 2020;73(11):e3615–3616.
  • Baron A, Hachem M, Tran Van Nhieu J, et al. Bronchoalveolar lavage in patients with COVID-19 with invasive mechanical ventilation for acute respiratory distress syndrome. Ann Am Thoracic Soc. 2021;18(4):723–726.
  • Williams D. Clinical Pharmacology of Corticosteroids. Respir Care. 2018;63(6):655–670.
  • Sterne J, Murthy S, Diaz J, et al. Association between administration of systemic corticosteroids and mortality among critically Ill patients with COVID-19. JAMA. 2020;324(13):1330.
  • Marta G, Lorena F, Laura M, et al. COVID-19-associated pulmonary aspergillosis in a tertiary hospital. J Fungi. 2022;8(2):97.
  • RECOVERY Group Collaborative. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med. 2021;384(8):693–704. doi: 10.1056/NEJMoa2021436.
  • Tappe B, Lauruschkat C, Strobel L, et al. COVID-19 patients share common, corticosteroid-independent features of impaired host immunity to pathogenic molds. Front Immunol. 2022;13. DOI:10.3389/fimmu.2022.954985
  • Salazar F, Bignell E, Brown GD, et al. Pathogenesis of Respiratory Viral and Fungal Coinfections. 2022 19;35(1):e0009421.
  • Feys S, Gonçalves S, Khan M, et al. Lung epithelial and myeloid innate immunity in influenza-associated or COVID-19-associated pulmonary aspergillosis: an observational study. Lancet Respir Med. 2022;10(12):1147–1159.