1,358
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A core UPS molecular complement implicates unique endocytic compartments at the parasite–host interface in Giardia lamblia

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2174288 | Received 18 Jul 2022, Accepted 25 Jan 2023, Published online: 13 Feb 2023

References

  • Balmer EA, Faso C. The road less traveled? Unconventional protein secretion at parasite–host interfaces. Front Cell Dev Biol. 2021;9. DOI:10.3389/fcell.2021.662711
  • Rabouille C, Malhotra V, Nickel W. Diversity in unconventional protein secretion. J Cell Sci. 2012;125:5251–15.
  • Rabouille C. Pathways of unconventional protein secretion. Trends Cell Biol. 2017;27:230–240.
  • Kim J, Gee HY, Lee MG. Unconventional protein secretion – new insights into the pathogenesis and therapeutic targets of human diseases. J Cell Sci. 2018;131. DOI:10.1242/jcs.213686
  • Denny PW, Gokool S, Russell DG, et al. Acylation-dependent protein export in Leishmania*. 2000. Available from: http://www.jbc.org/.
  • Stegmayer C, Kehlenbach A, Tournaviti S, et al. Direct transport across the plasma membrane of mammalian cells of Leishmania HASPB as revealed by a CHO export mutant. J Cell Sci. 2005;118:517–527.
  • MacLean LM, O’Toole PJ, Stark M, et al. Trafficking and release of Leishmania metacyclic HASPB on macrophage invasion. Cell Microbiol. 2012;14:740–761.
  • Möskes C, Burghaus PA, Wernli B, et al. Export of Plasmodium falciparum calcium-dependent protein kinase 1 to the parasitophorous vacuole is dependent on three N-terminal membrane anchor motifs. Mol Microbiol. 2004;54:676–691.
  • Nievas YR, Lizarraga A, Salas N, et al. Extracellular vesicles released by anaerobic protozoan parasites: current situation. Cell Microbiol. 2020;22. DOI:10.1111/cmi.13257
  • Silverman JM, Chan SK, Robinson DP, et al. Proteomic analysis of the secretome of Leishmania donovani. Genome Biol. 2008;9:R35.
  • Sampaio NG, Emery SJ, Garnham AL, et al. Extracellular vesicles from early stage Plasmodium falciparum -infected red blood cells contain PfEMP1 and induce transcriptional changes in human monocytes. Cell Microbiol. 2018;20:e12822.
  • Hehl AB, Marti M. Secretory protein trafficking in Giardia intestinalis. Mol Microbiol. 2004;53:19–28.
  • Marti M, Hehl AB. Encystation-specific vesicles in Giardia: a primordial Golgi or just another secretory compartment? Trends Parasitol. 2003;19:440–446.
  • Elias EV, Quiroga R, Gottig N, et al. Characterization of SNAREs determines the absence of a typical Golgi apparatus in the ancient eukaryote Giardia lamblia. J Biol Chem. 2008;283(51):35996–36010. DOI:10.1074/jbc.M806545200
  • Faso C, Hehl AB. Membrane trafficking and organelle biogenesis in Giardia lamblia: use it or lose it. Int J Parasitol. 2011;41:471–480.
  • Faso C, Hehl AB. A cytonaut’s guide to protein trafficking in Giardia lamblia. In: Ortega-Pierres MG, editor. Advances in parasitology. Vol. 106. London UK: Academic Press; 2019. pp. 105–127.
  • McCaffery JM, Faubert GM, Gillin FD. Giardia lamblia: traffic of a Trophozoite variant surface protein and a major cyst wall epitope during growth, encystation, and antigenic switching. Exp Parasitol. 1994;79:236–249.
  • Santos R, Ástvaldsson Á, Pipaliya SV, et al. Combined nanometric and phylogenetic analysis of unique endocytic compartments in Giardia lamblia sheds light on the evolution of endocytosis in Fornicata. BMC Biol. 2022;20: BiorXiv preprint.
  • Cernikova L, Faso C, Hehl AB. Phosphoinositide-binding proteins mark, shape and functionally modulate highly-diverged endocytic compartments in the parasitic protist Giardia lamblia. PLOS Pathog. 2020;16:e1008317.
  • Zumthor JP, Cernikova L, Rout S, et al. Static Clathrin assemblies at the peripheral vacuole—plasma membrane interface of the parasitic protozoan Giardia lamblia. PLOS Pathog. 2016;12:e1005756.
  • Pipaliya SV, Santos R, Salas-Leiva D, et al. Unexpected organellar locations of ESCRT machinery in Giardia intestinalis and complex evolutionary dynamics spanning the transition to parasitism in the lineage Fornicata. BMC Biol. 2021;19. DOI:10.1186/s12915-021-01077-2.
  • Cernikova L, Faso C, Hehl AB. Five facts about Giardia lamblia. PLoS Pathogens. 2018;14:e1007250.
  • Allain T, Fekete E, Buret AG. Giardia cysteine proteases: the teeth behind the smile. Trends Parasitol. 2019;35:636–648.
  • Liu J, Ma’ayeh S, Peirasmaki D, et al. Secreted Giardia intestinalis cysteine proteases disrupt intestinal epithelial cell junctional complexes and degrade chemokines. Virulence. 2018;9:879–894.
  • Ortega-Pierres MG, Argüello-García R. Giardia duodenalis: role of secreted molecules as virulent factors in the cytotoxic effect on epithelial cells. In: Advances in parasitology. Vol. 106. London UK: Academic Press; 2019. pp. 129–169.
  • Ortega-Pierres G, Argüello-García R, Laredo-Cisneros MS, et al. Giardipain-1, a protease secreted by Giardia duodenalis trophozoites, causes junctional, barrier and apoptotic damage in epithelial cell monolayers. Int J Parasitol. 2018;48:621–639.
  • Singer SM, Fink MY, Angelova VV. Recent insights into innate and adaptive immune responses to Giardia HHS public access. Adv Parasitol. 2019;106:171–208.
  • Ma’ayeh SY, Liu J, Peirasmaki D, et al. Characterization of the Giardia intestinalis secretome during interaction with human intestinal epithelial cells: the impact on host cells. PLoS Negl Trop Dis. 2017;11:e0006120.
  • Dubourg A, Xia D, Winpenny JP, et al. Giardia secretome highlights secreted tenascins as a key component of pathogenesis. Gigascience. 2018;7:1–13.
  • Davids BJ, Liu CM, Hanson EM, et al. Identification of conserved candidate vaccine antigens in the surface proteome of giardia lamblia. Infect Immun. 2019;87. DOI:10.1128/IAI.00219-19.
  • Ahn CS, Kim JG, Shin MH, et al. Comparison of secretome profile of pathogenic and non-pathogenic Entamoeba histolytica. Proteomics. 2018;18:1700341.
  • Tovy A, Tov RS, Gaentzsch R, et al. A new nuclear function of the Entamoeba histolytica glycolytic enzyme enolase: the metabolic regulation of cytosine-5 methyltransferase 2 (Dnmt2) activity. PLOS Pathog. 2010;6:e1000775.
  • Ghosh AK, Coppens I, Gårdsvoll H, et al. Plasmodium ookinetes coopt mammalian plasminogen to invade the mosquito midgut. Proc Natl Acad Sci U S A. 2011;108:17153–17158.
  • Miura N, Kirino A, Endo S, et al. Tracing putative trafficking of the glycolytic enzyme enolase via SNARE-driven unconventional secretion. Eukaryot Cell. 2012;11:1075–1082.
  • Pancholi V. Multifunctional α-enolase: its role in diseases. Cell Mol Life Sci. 2001;58:902–920.
  • Ringqvist E, Palm JED, Skarin H, et al. Release of metabolic enzymes by Giardia in response to interaction with intestinal epithelial cells. Mol Biochem Parasitol. 2008;159:85–91.
  • Eckmann L, Laurent F, Langford TD, et al. Nitric oxide production by human intestinal epithelial cells and competition for arginine as potential determinants of host defense against the lumen-dwelling pathogen Giardia lamblia. J Immunol. 2000;164:1478–1487.
  • Iharaid S, Miyamoto Y, Le CHY, et al. Conserved metabolic enzymes as vaccine antigens for giardiasis; 2022. DOI: 10.1371/journal.pntd.0010323.
  • Stadelmann B, Hanevik K, Andersson MK, et al. The role of arginine and arginine-metabolizing enzymes during Giardia-host cell interactions in vitro; 2013. Available from: http://www.biomedcentral.com/1471-2180/13/256.
  • Adam RD. Giardia duodenalis: biology and Pathogenesis; 2021. DOI:10.1128/CMR.
  • Weeratunga SK, Osman A, Hu N-J, et al. Alpha-1 giardin is an annexin with highly unusual calcium-regulated mechanisms. J Mol Biol. 2012;423:169–181.
  • Jenikova G, Hruz P, Andersson MK, et al. α1-giardin based live heterologous vaccine protects against Giardia lamblia infection in a murine model. Vaccine. 2011;29:9529–9537.
  • Weiland MEL, McArthur AG, Morrison HG, et al. Annexin-like alpha giardins: a new cytoskeletal gene family in Giardia lamblia. Int J Parasitol. 2005;35:617–626.
  • Popa SJ, Stewart SE, Moreau K. Unconventional secretion of annexins and galectins. Semin Cell Dev Biol. 2018;83:42–50.
  • Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37:420–423.
  • Krogh A, Larsson B, von Heijne G, et al. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–580.
  • Franzén O, Jerlström-Hultqvist J, Einarsson E, et al. Transcriptome profiling of Giardia intestinalis using strand-specific RNA-Seq. PLoS Comput Biol. 2013;9:e1003000.
  • Tolba MEM, Kobayashi S, Imada M, et al. Giardia lamblia transcriptome analysis using TSS-Seq and RNA-Seq. PLoS ONE. 2013;8:76184.
  • Peirasmaki D, Ma’ayeh SY, Xu F, et al. High Cysteine Membrane Proteins (HCMPs) are up-regulated during Giardia-host cell interactions. Front Genet. 2020;11. DOI:10.3389/fgene.2020.00913.
  • Rojas L, Grüttner J, Ma’ayeh S, et al. Dual RNA sequencing reveals key events when different Giardia life cycle stages interact with human intestinal epithelial cells in vitro. Front Cell Infect Microbiol. 2022;12. DOI:10.3389/fcimb.2022.862211
  • Elmendorf HG, Dawson SC, McCaffery JM. The cytoskeleton of Giardia lamblia. Int J Parasitol. 2003;33:3–28.
  • Chavez B, Martinez-Palomo A. Giardia lamblia: freeze-fracture ultrastructure of the ventral disc plasma membrane. J Eukaryot Microbiol. 1995;42:136–141.
  • Friend DS. THE fine structure of giardia muris. J cell Biol. 1966;29:317–332.
  • Cernikova L, Faso C, Hehl AB. Roles of phosphoinositides and their binding proteins in parasitic protozoa. Trends Parasitol. 2019;35:996–1008.
  • Corrêa G, Vilela R, Menna-Barreto RFS, et al. Cell death induction in Giardia lamblia: effect of beta-lapachone and starvation. Parasitol Int. 2009;58:424–437.
  • Gillingham AK, Munro S. Long coiled-coil proteins and membrane traffic. Biochim Biophys Acta Mol Cell Res. 2003;1641:71–85.
  • Manning G, Reiner DS, Lauwaet T, et al. The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology. Genome bio. 2011;12. http://genomebiology.com/2011/12/7/R66.
  • Acosta-Virgen K, Chávez-Munguía B, Talamás-Lara D, et al. Giardia lamblia: identification of peroxisomal-like proteins. Exp Parasitol. 2018;191:36–43.
  • Tůmová P, Voleman L, Klingl A, et al. Inheritance of the reduced mitochondria of Giardia intestinalis is coupled to the flagellar maturation cycle. BMC Biol. 2021;19. DOI:10.1186/s12915-021-01129-7.
  • Soltys BJ, Falah M, Gupta RS. Identification of endoplasmic reticulum in the primitive eukaryote Giardia lamblia using cryoelectron microscopy and antibody to Bip. J Cell Sci. 1996;109:1909–1917.
  • Benchimol M, Souza W. Giardia intestinalis and its endomembrane system*. J Eukaryotic Microbiol. 2022;69. DOI:10.1111/jeu.12893
  • Rivero MR, Jausoro I, Bisbal M, et al. Receptor-mediated endocytosis and trafficking between endosomal–lysosomal vacuoles in Giardia lamblia. Parasitol Res. 2013;112:1813–1818.
  • Abodeely M, DuBois KN, Hehl A, et al. A contiguous compartment functions as endoplasmic reticulum and endosome/lysosome in Giardia lamblia. Eukaryot Cell. 2009;8:1665–1676.
  • Midlej V, de Souza W, Benchimol M. The peripheral vesicles gather multivesicular bodies with different behavior during the Giardia intestinalis life cycle. J Struct Biol. 2019;207:301–311.
  • Moyano S, Musso J, Feliziani C, et al. Exosome biogenesis in the protozoa parasite Giardia lamblia: a model of reduced interorganellar crosstalk. Cells. 2019;8:1600.
  • Sztul E, Lupashin V, Sztul E. Role of tethering factors in secretory membrane traffic. Am J Physiol Cell Physiol. 2006;290:11–26.
  • Morgan RO, Fernández MP. Molecular phylogeny of annexins and identification of a primitive homologue in Giardia lamblia. Mol Biol Evol. 1995;12:967–979.
  • Weiland ME-L, Palm JED, Griffiths WJ, et al. Characterisation of alpha-1 giardin: an immunodominant Giardia lamblia annexin with glycosaminoglycan-binding activity. Int J Parasitol. 2003;33:1341–1351.
  • Gerke V, Moss SE. Annexins: from structure to function; 2002. DOI:10.1152/physrev.00030.2001.-Annexins.
  • Luecke H, Chang BT, Mailliard WS, et al. Crystal structure of the annexin XII hexamer and implications for bilayer insertion. Nature. 1995;378:512–515.
  • Morf L, Spycher C, Rehrauer H, et al. The transcriptional response to encystation stimuli in Giardia lamblia is restricted to a small set of genes. Eukaryot Cell. 2010;9:1566–1576.
  • Štefanić S, Morf L, Kulangara C, et al. Neogenesis and maturation of transient Golgi-like cisternae in a simple eukaryote. J Cell Sci. 2009;122:2846–2856.
  • R Core Team. R: a language and environment for statistical computing. R Found Stat Comput. 2020;2021:21363.
  • Perez-Riverol Y, Bai J, Bandla C, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–552.